|
Zapiski Nauchnykh Seminarov LOMI, 1984, Volume 139, Pages 168–179
(Mi znsl1745)
|
|
|
|
Solvability of a nonlinear Sturm–Liouville boundary-value problem for a second-order integrodifferential equation with one-sided restrictions on the growth of the right side with respect to the first derivative
M. N. Yakovlev
Abstract:
The following problem is considered: find $u(t)\in C^{(2)}([0,1])$ such that
\begin{equation}
u''=F\biggl(t,u,u',\int_0^1K(t,s,u(s))ds\biggr),\quad 0<t<1,
\tag{1}
\end{equation}
\begin{equation}
\begin{gathered}
au(0)-bu'(0)=g\varphi\biggl(u(0),u(1),\int_0^1l(s,u(s))\,ds\biggr),
\\
cu(1)+du'(1)=h\Psi\biggl(u(0),u(1),\int_0^1m(s,u,(s))\,ds\biggr).
\end{gathered}
\tag{2}
\end{equation}
Both those cases in which there exist both an upper and lower function of
problem (1), (2) as well as those cases in which there exist only an upper
function, only a lower function, or neither an upper or lower function are
considered. The existence of a solution is established under conditions of
the type
$$
F(t,u,p,w)\operatorname{sign}u\geqslant-k(u)\omega(|p|)\text{\rm{ for }}A(t)\leqslant u\leqslant B(t),
\quad -\infty<p<+\infty,
$$
or (for $b>0$, $d>0$)
$$
F(t,u,p,w)\geqslant-k(u)\omega(|p|)\text{\rm{ or }}F(t,u,p,w)\leqslant-k(u)\omega(|p|),
$$
or (for $d>0$)
$$
F(t,u,p,w)\operatorname{sign}p\geqslant-k(u)\omega(|p|),
$$
or (for $b>0$)
$$
F(t,u,p,w)\operatorname{sign}p\leqslant-k(u)\omega(|p|).
$$
Citation:
M. N. Yakovlev, “Solvability of a nonlinear Sturm–Liouville boundary-value problem for a second-order integrodifferential equation with one-sided restrictions on the growth of the right side with respect to the first derivative”, Computational methods and algorithms. Part VII, Zap. Nauchn. Sem. LOMI, 139, "Nauka", Leningrad. Otdel., Leningrad, 1984, 168–179; J. Soviet Math., 36:2 (1987), 292–300
Linking options:
https://www.mathnet.ru/eng/znsl1745 https://www.mathnet.ru/eng/znsl/v139/p168
|
Statistics & downloads: |
Abstract page: | 131 | Full-text PDF : | 46 |
|