Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1984, Volume 139, Pages 168–179 (Mi znsl1745)  

Solvability of a nonlinear Sturm–Liouville boundary-value problem for a second-order integrodifferential equation with one-sided restrictions on the growth of the right side with respect to the first derivative

M. N. Yakovlev
Abstract: The following problem is considered: find $u(t)\in C^{(2)}([0,1])$ such that
\begin{equation} u''=F\biggl(t,u,u',\int_0^1K(t,s,u(s))ds\biggr),\quad 0<t<1, \tag{1} \end{equation}

\begin{equation} \begin{gathered} au(0)-bu'(0)=g\varphi\biggl(u(0),u(1),\int_0^1l(s,u(s))\,ds\biggr), \\ cu(1)+du'(1)=h\Psi\biggl(u(0),u(1),\int_0^1m(s,u,(s))\,ds\biggr). \end{gathered} \tag{2} \end{equation}
Both those cases in which there exist both an upper and lower function of problem (1), (2) as well as those cases in which there exist only an upper function, only a lower function, or neither an upper or lower function are considered. The existence of a solution is established under conditions of the type
$$ F(t,u,p,w)\operatorname{sign}u\geqslant-k(u)\omega(|p|)\text{\rm{ for }}A(t)\leqslant u\leqslant B(t), \quad -\infty<p<+\infty, $$
or (for $b>0$, $d>0$)
$$ F(t,u,p,w)\geqslant-k(u)\omega(|p|)\text{\rm{ or }}F(t,u,p,w)\leqslant-k(u)\omega(|p|), $$
or (for $d>0$)
$$ F(t,u,p,w)\operatorname{sign}p\geqslant-k(u)\omega(|p|), $$
or (for $b>0$)
$$ F(t,u,p,w)\operatorname{sign}p\leqslant-k(u)\omega(|p|). $$
English version:
Journal of Soviet Mathematics, 1987, Volume 36, Issue 2, Pages 292–300
DOI: https://doi.org/10.1007/BF01091810
Bibliographic databases:
UDC: 517.927.4
Language: Russian
Citation: M. N. Yakovlev, “Solvability of a nonlinear Sturm–Liouville boundary-value problem for a second-order integrodifferential equation with one-sided restrictions on the growth of the right side with respect to the first derivative”, Computational methods and algorithms. Part VII, Zap. Nauchn. Sem. LOMI, 139, "Nauka", Leningrad. Otdel., Leningrad, 1984, 168–179; J. Soviet Math., 36:2 (1987), 292–300
Citation in format AMSBIB
\Bibitem{Yak84}
\by M.~N.~Yakovlev
\paper Solvability of a nonlinear Sturm--Liouville boundary-value problem for a second-order integrodifferential equation with one-sided restrictions on the growth of the right side with respect to the first derivative
\inbook Computational methods and algorithms. Part~VII
\serial Zap. Nauchn. Sem. LOMI
\yr 1984
\vol 139
\pages 168--179
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl1745}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=756654}
\zmath{https://zbmath.org/?q=an:0611.45005|0559.45004}
\transl
\jour J. Soviet Math.
\yr 1987
\vol 36
\issue 2
\pages 292--300
\crossref{https://doi.org/10.1007/BF01091810}
Linking options:
  • https://www.mathnet.ru/eng/znsl1745
  • https://www.mathnet.ru/eng/znsl/v139/p168
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:131
    Full-text PDF :46
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024