|
Zapiski Nauchnykh Seminarov LOMI, 1984, Volume 139, Pages 148–155
(Mi znsl1743)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
Intermediate rates of growth of Lebesgue constants in the two-dimensional case
A. N. Podkorutov
Abstract:
The behavior as $R\to\infty$ of the Lebesgue constants
$$
L(RW)=\dfrac{1}{4\pi^2}\int^\pi_{-\pi}\int^\pi_{-\pi}\biggl|\sum_{(n,m)\in RW\cap\mathbf Z^2}e^{i(nx+my)}\biggr|\,dx\,dy,
$$
where $RW$ is homothetic to a compact, convex set $W$ is considered.
that
a) for any $p>2$ there exists $W$ for which
$$
C_1(\ln R)^p\leqslant L(RW)\leqslant C_2(\ln R)^p,\quad R\geqslant2;
$$
b) for any $p\in\biggl(0,\dfrac12\biggr)$ and $\alpha>1$ there exists $W$ for which
$$
C_1R^p(\ln R)^{-\alpha p}\leqslant L(RW)\leqslant C_2R^p(\ln R)^{2-2p},\quad R\geqslant2.
$$
Citation:
A. N. Podkorutov, “Intermediate rates of growth of Lebesgue constants in the two-dimensional case”, Computational methods and algorithms. Part VII, Zap. Nauchn. Sem. LOMI, 139, "Nauka", Leningrad. Otdel., Leningrad, 1984, 148–155; J. Soviet Math., 36:2 (1987), 276–282
Linking options:
https://www.mathnet.ru/eng/znsl1743 https://www.mathnet.ru/eng/znsl/v139/p148
|
Statistics & downloads: |
Abstract page: | 182 | Full-text PDF : | 66 |
|