|
Zapiski Nauchnykh Seminarov POMI, 1992, Volume 202, Pages 190–203
(Mi znsl1732)
|
|
|
|
Periodic solutions of second-order systems with one-sided restrictions to the growth of the right-hand side with respect to the first derivative
M. N. Yakovlev
Abstract:
For the system
\begin{equation}
u''_i=f_i(t,u_1,\dots,u_n,u_1',\dots,u_n')\quad (i=1,\dots,n)
\tag{1}
\end{equation}
a periodic solution exists if for each i one of the following inequalities holds:
\begin{gather*}
f_i(t,u_1,\dots,u_n,p_1,\dots,p_n)\leqslant A(p_1,\dots,p_{i-1})p_i^2+B(p_1,\dots,p_{i-1}),
\\
f_i(t,u_1,\dots,u_n,p_1,\dots,p_n)\geqslant-A(p_1,\dots,p_{i-1})p_i^2-B(p_1,\dots,p_{i-1}),
\\
f_i(t,u_1,\dots,u_n,p_1,\dots,p_n)\operatorname{sign}\leqslant A(p_1,\dots,p_{i-1})p_i^2+B(p_1,\dots,p_{i-1}),
\\
f_i(t,u_1,\dots,u_n,p_1,\dots,p_n)\operatorname{sign}\geqslant-A(p_1,\dots,p_{i-1})p_i^2-B(p_1,\dots,p_{i-1}),
\\
f_i(t,u_1,\dots,u_n,p_1,\dots,p_n)\operatorname{sign}u_i\geqslant-A(p_1,\dots,p_{i-1})p_i^2-B(p_1,\dots,p_{i-1}),
\end{gather*}
for $\alpha(t)\leqslant u\leqslant\beta(t)$. Here $\alpha(t)$ and $\beta(t)$ are the lower and upper vector functions for system (1) and the periodic conditions; $A\geqslant0$, $B\geqslant0$. Bibliography: 1 titles.
Citation:
M. N. Yakovlev, “Periodic solutions of second-order systems with one-sided restrictions to the growth of the right-hand side with respect to the first derivative”, Computational methods and algorithms. Part IX, Zap. Nauchn. Sem. POMI, 202, Nauka, St. Petersburg, 1992, 190–203; J. Math. Sci., 79:3 (1996), 1150–1159
Linking options:
https://www.mathnet.ru/eng/znsl1732 https://www.mathnet.ru/eng/znsl/v202/p190
|
|