|
Zapiski Nauchnykh Seminarov POMI, 1992, Volume 202, Pages 185–189
(Mi znsl1731)
|
|
|
|
Solvability of nonlinear systems including $(\gamma,\delta)$-comparison pairs
M. N. Yakovlev
Abstract:
Let $\gamma,\delta\in R^n$ with $\gamma_j,\delta_j\in\{0,1\}$. A comparison pair for a system of equations $f_i(u_1,\dots,u_n)=0$ $(i=1,\dots,n)$ is a pair of vectors $v,w\in R^n$, $v\leqslant w$, such that
\begin{gather*}
\gamma_if_i(u_1,\dots,u_{i-1},v_i,u_{i+1},\dots,u_n)\leqslant0
\\
\delta_if_i(u_1,\dots,u_{i-1},w_i,u_{i+1},\dots,u_n)\geqslant0
\end{gather*}
for $\gamma_ju_j\geqslant v_j$, $\delta_ju_j\leqslant w_j$ $(j=1,\dots,n)$. The presence of comparison pairs enables one to essentially weaken the assumptions of the existence theorem. Bibliography: 1 title.
Citation:
M. N. Yakovlev, “Solvability of nonlinear systems including $(\gamma,\delta)$-comparison pairs”, Computational methods and algorithms. Part IX, Zap. Nauchn. Sem. POMI, 202, Nauka, St. Petersburg, 1992, 185–189; J. Math. Sci., 79:3 (1996), 1146–1149
Linking options:
https://www.mathnet.ru/eng/znsl1731 https://www.mathnet.ru/eng/znsl/v202/p185
|
Statistics & downloads: |
Abstract page: | 135 | Full-text PDF : | 64 |
|