Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1992, Volume 202, Pages 158–184 (Mi znsl1730)  

This article is cited in 1 scientific paper (total in 1 paper)

On semilinear dissipative systems of equations with a small parameter that arise in solution of the Navier–Stokes equations, equation of motion of the Oldroyd fluids, and equations of motion of the Kelvin–Voight fluids

A. P. Oskolkov
Abstract: Solutions of the two-dimensional initial boundary-value problem for the Navier–Stokes equations are approximated by solutions of the initial boundary-value problem
\begin{gather} \frac{\partial v^\varepsilon}{\partial t}-\nu\Delta v^\varepsilon+v^\varepsilon_kv^\varepsilon_{x_k}+\frac12v^\varepsilon\operatorname{div}v^\varepsilon-\frac{1}{\varepsilon}\operatorname{grad}\operatorname{div}w^\varepsilon=f,\enskip \frac{\partial w^\varepsilon}{\partial t}+\alpha w^\varepsilon=v^\varepsilon,\enskip \nu,\alpha>0 \tag{9} \\ v^\varepsilon|_{t=0}=v_0^\varepsilon(x),\quad w^\varepsilon|_{t=0}=0,\quad x\in\Omega;\quad v^\varepsilon|_{\partial\Omega}=w^\varepsilon|_{\partial\Omega}=0,\quad t\geqslant0, \tag{10} \end{gather}
We study the proximity of the solutions of these problems in suitable norms and also the proximity of their minimal global $B$-attractors. Similar results are valid for two-dimensional equations of motion of the Oldroyd fluids (see Eqs. (38) and (41)) and for three-dimensional equations of motion of the Kelvin–Voight fluids (see Eqs. (39) and (43)). Bibliography: 17 titles.
English version:
Journal of Mathematical Sciences, 1996, Volume 79, Issue 3, Pages 1129–1145
DOI: https://doi.org/10.1007/BF02366134
Bibliographic databases:
UDC: 517.94
Language: Russian
Citation: A. P. Oskolkov, “On semilinear dissipative systems of equations with a small parameter that arise in solution of the Navier–Stokes equations, equation of motion of the Oldroyd fluids, and equations of motion of the Kelvin–Voight fluids”, Computational methods and algorithms. Part IX, Zap. Nauchn. Sem. POMI, 202, Nauka, St. Petersburg, 1992, 158–184; J. Math. Sci., 79:3 (1996), 1129–1145
Citation in format AMSBIB
\Bibitem{Osk92}
\by A.~P.~Oskolkov
\paper On semilinear dissipative systems of equations with a small parameter that arise in solution of the Navier--Stokes equations, equation of motion of the Oldroyd fluids, and equations of motion of the Kelvin--Voight fluids
\inbook Computational methods and algorithms. Part~IX
\serial Zap. Nauchn. Sem. POMI
\yr 1992
\vol 202
\pages 158--184
\publ Nauka
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1730}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1259294}
\zmath{https://zbmath.org/?q=an:0844.76017|0801.76017}
\transl
\jour J. Math. Sci.
\yr 1996
\vol 79
\issue 3
\pages 1129--1145
\crossref{https://doi.org/10.1007/BF02366134}
Linking options:
  • https://www.mathnet.ru/eng/znsl1730
  • https://www.mathnet.ru/eng/znsl/v202/p158
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:191
    Full-text PDF :102
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024