Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2008, Volume 355, Pages 199–218 (Mi znsl1708)  

This article is cited in 2 scientific papers (total in 2 papers)

Expansion of vectors in powers of a matrix

I. E. Maksimenkoa, E. L. Rabkinb

a St. Petersburg State University of Information Technologies, Mechanics and Optics
b St. Petersburg State University of Telecommunications
References:
Abstract: In this paper, we investigate the problem of expansion of any $d$-dimensional vector in powers of a dilation matrix $M$. (A dilation matrix is an integral matrix of size $d\times d$ with all eigenvalues greater than 1 in modulus.) This expansion can be viewed as a multidimensional system of numeration with the matrix as the base and a special set of vectors as the set of digits. We give a constructive method of expanding an integral vector in powers of a dilation matrix and prove the existence of an expansion for any real vector. Bibl. – 4 titles.
Received: 31.03.2008
English version:
Journal of Mathematical Sciences (New York), 2009, Volume 156, Issue 5, Pages 834–844
DOI: https://doi.org/10.1007/s10958-009-9291-8
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: I. E. Maksimenko, E. L. Rabkin, “Expansion of vectors in powers of a matrix”, Investigations on linear operators and function theory. Part 36, Zap. Nauchn. Sem. POMI, 355, POMI, St. Petersburg, 2008, 199–218; J. Math. Sci. (N. Y.), 156:5 (2009), 834–844
Citation in format AMSBIB
\Bibitem{MakRab08}
\by I.~E.~Maksimenko, E.~L.~Rabkin
\paper Expansion of vectors in powers of a~matrix
\inbook Investigations on linear operators and function theory. Part~36
\serial Zap. Nauchn. Sem. POMI
\yr 2008
\vol 355
\pages 199--218
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1708}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2009
\vol 156
\issue 5
\pages 834--844
\crossref{https://doi.org/10.1007/s10958-009-9291-8}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-65049089852}
Linking options:
  • https://www.mathnet.ru/eng/znsl1708
  • https://www.mathnet.ru/eng/znsl/v355/p199
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:324
    Full-text PDF :157
    References:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024