|
Zapiski Nauchnykh Seminarov POMI, 2008, Volume 355, Pages 180–198
(Mi znsl1707)
|
|
|
|
This article is cited in 10 scientific papers (total in 10 papers)
Littlewood–Paley theorem for arbitrary intervals: weighted estimates
S. V. Kislyakov St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
Suppose $1<r<2$ and $b$ is a weight on $\mathbb R$ such that $b^{-\frac1{r-1}}$ satisfies the Muckenhoupt condition $A_{r'/2}$ ($r'$ is the exponent conjugate to $r$). If $f_j$ are functions whose Fourier transforms are supported on mutually disjoint intervals, then
$$
\Bigl\Vert\sum_j f_j\Bigr\Vert_{L^p(\mathbb R,b)}\le C\Bigl\Vert\Bigl(\sum_j|f_j|^2\Bigr)^{1/2}\Bigr\Vert_{L^p(\mathbb R,b)}
$$
for $0<p\le r$. Bibl. – 9 titles.
Received: 12.03.2008
Citation:
S. V. Kislyakov, “Littlewood–Paley theorem for arbitrary intervals: weighted estimates”, Investigations on linear operators and function theory. Part 36, Zap. Nauchn. Sem. POMI, 355, POMI, St. Petersburg, 2008, 180–198; J. Math. Sci. (N. Y.), 156:5 (2009), 824–833
Linking options:
https://www.mathnet.ru/eng/znsl1707 https://www.mathnet.ru/eng/znsl/v355/p180
|
Statistics & downloads: |
Abstract page: | 657 | Full-text PDF : | 207 | References: | 84 |
|