|
Zapiski Nauchnykh Seminarov POMI, 2008, Volume 355, Pages 173–179
(Mi znsl1706)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
Toeplitz condition numbers as an $H^\infty$ interpolation problem
R. Zarouf Institut de Mathématiques de Bordeaux, Université Bordeaux
Abstract:
The condition numbers $CN(T)=\Vert T\Vert\cdot\Vert T^{-1}\Vert$ of Toeplitz and analyticToeplitz $n\times n$ matrices $T$ are studied. It is shown that the supremum of $CN(T)$ over all such matrices with $\Vert T\Vert\leq1$ and a given minimum of eigenvalues $r=\min_{i=1,\dots,n}|\lambda_i|>0$ behaves as the corresponding supremum over all $n\times n$ matrices (i.e., as $\frac1{r^n}$; Kronecker), and this equivalence is uniform in $n$ and $r$. The proof is based on the use of the Sarason–Sz.-Nagy–Foiaş commutant lifting theorem. Bibl. – 2 titles.
Received: 15.06.2008
Citation:
R. Zarouf, “Toeplitz condition numbers as an $H^\infty$ interpolation problem”, Investigations on linear operators and function theory. Part 36, Zap. Nauchn. Sem. POMI, 355, POMI, St. Petersburg, 2008, 173–179; J. Math. Sci. (N. Y.), 156:5 (2009), 819–823
Linking options:
https://www.mathnet.ru/eng/znsl1706 https://www.mathnet.ru/eng/znsl/v355/p173
|
Statistics & downloads: |
Abstract page: | 183 | Full-text PDF : | 63 | References: | 35 |
|