|
Zapiski Nauchnykh Seminarov POMI, 2008, Volume 355, Pages 163–172
(Mi znsl1705)
|
|
|
|
Radial limits of positive solutions to the Darboux equation
E. S. Dubtsov St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
Assume that a positive function $u$ satisfies the Darboux equation
$$
\Delta u=\frac{(\alpha-1)}y\frac{\partial u}{\partial y},\qquad\alpha>0,
$$
in the upper half-space $\mathbb R_+^{d+1}$. We investigate Bloch type conditions that guarantee the following property: for any $a\in(0,+\infty)$, the set where the radial limit of $u$ is equal to $a$, is large in the sense of the Hausdorff dimension. Bibl. – 6 titles.
Received: 25.01.2008
Citation:
E. S. Dubtsov, “Radial limits of positive solutions to the Darboux equation”, Investigations on linear operators and function theory. Part 36, Zap. Nauchn. Sem. POMI, 355, POMI, St. Petersburg, 2008, 163–172; J. Math. Sci. (N. Y.), 156:5 (2009), 813–818
Linking options:
https://www.mathnet.ru/eng/znsl1705 https://www.mathnet.ru/eng/znsl/v355/p163
|
Statistics & downloads: |
Abstract page: | 207 | Full-text PDF : | 45 | References: | 52 |
|