Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2008, Volume 355, Pages 139–162 (Mi znsl1704)  

This article is cited in 1 scientific paper (total in 1 paper)

On analytic solutions of the heat equation with an operator coefficient

A. Vershynina, S. L. Gefter

V. N. Karazin Kharkiv National University
Full-text PDF (326 kB) Citations (1)
References:
Abstract: Let $A$ be a bounded linear operator on a Banach space and $g$ a vector-valued function analytic on a neighborhood of the origin of $\mathbb R$. We obtain conditions for the existence of analytic solutions for the Cauchy problem
$$ \begin{cases} \dfrac{\partial u}{\partial t}=A^2\dfrac{\partial^2u}{\partial x^2},\\u(0,x)=g(x). \end{cases} $$
Moreover, we consider a representation of the solution of this problem as a Poisson integral and investigate the Cauchy problem for the corresponding nonhomogeneous equation. Bibl. – 22 titles.
Received: 02.06.2008
English version:
Journal of Mathematical Sciences (New York), 2009, Volume 156, Issue 5, Pages 799–812
DOI: https://doi.org/10.1007/s10958-009-9290-9
Bibliographic databases:
UDC: 517.968+517.983
Language: Russian
Citation: A. Vershynina, S. L. Gefter, “On analytic solutions of the heat equation with an operator coefficient”, Investigations on linear operators and function theory. Part 36, Zap. Nauchn. Sem. POMI, 355, POMI, St. Petersburg, 2008, 139–162; J. Math. Sci. (N. Y.), 156:5 (2009), 799–812
Citation in format AMSBIB
\Bibitem{VerGef08}
\by A.~Vershynina, S.~L.~Gefter
\paper On analytic solutions of the heat equation with an operator coefficient
\inbook Investigations on linear operators and function theory. Part~36
\serial Zap. Nauchn. Sem. POMI
\yr 2008
\vol 355
\pages 139--162
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1704}
\zmath{https://zbmath.org/?q=an:1182.35227}
\elib{https://elibrary.ru/item.asp?id=14788959}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2009
\vol 156
\issue 5
\pages 799--812
\crossref{https://doi.org/10.1007/s10958-009-9290-9}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-65049091166}
Linking options:
  • https://www.mathnet.ru/eng/znsl1704
  • https://www.mathnet.ru/eng/znsl/v355/p139
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:311
    Full-text PDF :89
    References:46
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024