Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2002, Volume 294, Pages 245–259 (Mi znsl1698)  

This article is cited in 12 scientific papers (total in 12 papers)

Bahadur efficiency and local optimality of a test for the exponentiality based on the Moran statistics

A. V. Tchirina

Saint-Petersburg State University
Abstract: The scale-free test for exponentiality introduced by Moran is under study. It had been constructed as an optimal test of exponentiality against the gamma alternatives but may also be used to test exponentiality against IFR and DFR classes of alternatives. We obtain the rough large deviations asymptotics of the test under the null hypothesis and find its Bahadur efficiency values for most commonly used alternatives to the exponentiality. We also describe the local Bahadur optimality domain of the test. The large deviations theorem describes as well the asymptotic behaviour of a spacings-based Darling test for the uniformity under the null hypothesis.
Received: 10.06.2002
English version:
Journal of Mathematical Sciences (New York), 2005, Volume 127, Issue 1, Pages 1812–1819
DOI: https://doi.org/10.1007/s10958-005-0143-x
Bibliographic databases:
UDC: 519.21
Language: Russian
Citation: A. V. Tchirina, “Bahadur efficiency and local optimality of a test for the exponentiality based on the Moran statistics”, Probability and statistics. Part 5, Zap. Nauchn. Sem. POMI, 294, POMI, St. Petersburg, 2002, 245–259; J. Math. Sci. (N. Y.), 127:1 (2005), 1812–1819
Citation in format AMSBIB
\Bibitem{Chi02}
\by A.~V.~Tchirina
\paper Bahadur efficiency and local optimality of a test for the exponentiality based on the Moran statistics
\inbook Probability and statistics. Part~5
\serial Zap. Nauchn. Sem. POMI
\yr 2002
\vol 294
\pages 245--259
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1698}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1976759}
\zmath{https://zbmath.org/?q=an:1072.62037}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2005
\vol 127
\issue 1
\pages 1812--1819
\crossref{https://doi.org/10.1007/s10958-005-0143-x}
Linking options:
  • https://www.mathnet.ru/eng/znsl1698
  • https://www.mathnet.ru/eng/znsl/v294/p245
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:363
    Full-text PDF :72
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024