Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2002, Volume 293, Pages 118–128 (Mi znsl1678)  

This article is cited in 8 scientific papers (total in 8 papers)

An upper bound $O(2^{0.16254n})$ for Exact 3-Satisfiability: a simpler proof

A. S. Kulikov

Saint-Petersburg State University
Full-text PDF (203 kB) Citations (8)
Abstract: The exact $3$-satisfiability problem (X3SAT) is: given a Boolean formula in 3-CNF, find a truth assignment, such that exactly one literal in each clause is set to true. It is well-known that X3SAT is NP-complete. In this paper, we present an exact algorithm solving X3SAT in time $O(2^{0.162536n})$, where $n$ is the number of variables. Our proof of this bound is slightly simpler than one of Porschen, Randerath, and Speckenmeyer. These proofs are independent (and algorithms are slightly different), though they are based on the same ideas appeared in the proof of the previous bound $O(2^{0.186916n})$ by the same authors.
Received: 15.12.2002
English version:
Journal of Mathematical Sciences (New York), 2005, Volume 126, Issue 3, Pages 1195–1199
DOI: https://doi.org/10.1007/s10958-005-0096-0
Bibliographic databases:
UDC: 510.52
Language: Russian
Citation: A. S. Kulikov, “An upper bound $O(2^{0.16254n})$ for Exact 3-Satisfiability: a simpler proof”, Computational complexity theory. Part VII, Zap. Nauchn. Sem. POMI, 293, POMI, St. Petersburg, 2002, 118–128; J. Math. Sci. (N. Y.), 126:3 (2005), 1195–1199
Citation in format AMSBIB
\Bibitem{Kul02}
\by A.~S.~Kulikov
\paper An upper bound $O(2^{0.16254n})$ for Exact 3-Satisfiability: a simpler proof
\inbook Computational complexity theory. Part~VII
\serial Zap. Nauchn. Sem. POMI
\yr 2002
\vol 293
\pages 118--128
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1678}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1948827}
\zmath{https://zbmath.org/?q=an:1101.68609}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2005
\vol 126
\issue 3
\pages 1195--1199
\crossref{https://doi.org/10.1007/s10958-005-0096-0}
Linking options:
  • https://www.mathnet.ru/eng/znsl1678
  • https://www.mathnet.ru/eng/znsl/v293/p118
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:219
    Full-text PDF :94
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024