Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2006, Volume 338, Pages 98–124 (Mi znsl167)  

This article is cited in 6 scientific papers (total in 6 papers)

Orbits of subsystem stabilisers

N. A. Vavilov, N. P. Kharchev

Saint-Petersburg State University
Full-text PDF (293 kB) Citations (6)
References:
Abstract: Let $\Phi$ be a reduced irreducible root system. We consider pairs $(S,X(S))$, where $S$ is a closed set of roots, $X(S)$ is its stabiliser in the Weyl group $W(\Phi)$. We are interested in such pairs maximal with respеct to the following order: $(S_1,X(S_1))\le (S_2,X(S_2))$ if $S_1\subseteq S_2$ and $X(S_1)\le X(S_2)$. Main theorem asserts that if $\Delta$ is a root subsystem such that $(\Delta,X(\Delta))$ is maximal with respect to the above order, then $X(\Delta)$ acts transitively both on the long and short roots in $\Phi\setminus\Delta$. This result is a broad generalisation of the transitivity of the Weyl group on roots of given length.
Received: 30.10.2006
English version:
Journal of Mathematical Sciences (New York), 2007, Volume 145, Issue 1, Pages 4751–4764
DOI: https://doi.org/10.1007/s10958-007-0306-z
Bibliographic databases:
UDC: 512.5
Language: Russian
Citation: N. A. Vavilov, N. P. Kharchev, “Orbits of subsystem stabilisers”, Problems in the theory of representations of algebras and groups. Part 14, Zap. Nauchn. Sem. POMI, 338, POMI, St. Petersburg, 2006, 98–124; J. Math. Sci. (N. Y.), 145:1 (2007), 4751–4764
Citation in format AMSBIB
\Bibitem{VavKha06}
\by N.~A.~Vavilov, N.~P.~Kharchev
\paper Orbits of subsystem stabilisers
\inbook Problems in the theory of representations of algebras and groups. Part~14
\serial Zap. Nauchn. Sem. POMI
\yr 2006
\vol 338
\pages 98--124
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl167}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2354608}
\zmath{https://zbmath.org/?q=an:1144.20023}
\elib{https://elibrary.ru/item.asp?id=9305289}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2007
\vol 145
\issue 1
\pages 4751--4764
\crossref{https://doi.org/10.1007/s10958-007-0306-z}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34547515104}
Linking options:
  • https://www.mathnet.ru/eng/znsl167
  • https://www.mathnet.ru/eng/znsl/v338/p98
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:418
    Full-text PDF :113
    References:70
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024