Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2006, Volume 338, Pages 69–97 (Mi znsl166)  

This article is cited in 13 scientific papers (total in 13 papers)

Polyvector representations of $\operatorname{GL}_n$

N. A. Vavilov, E. Ya. Perelman

Saint-Petersburg State University
References:
Abstract: In the present paper we characterise $\bigwedge^n(\operatorname{GL}(n,R))$ over any commutative ring $R$ as the connected component of the stabiliser of Plücker ideal. This folk theorem is classically known for algebraically closed fields and should be also well-known in general. However, we are not aware of any obvious reference, so we produce a detailed proof which follows a general scheme developed by W. C. Waterhouse. The present paper is a technical preliminary for a subsequent paper, where we construct decomposition of transvections in polyvector representations of $\operatorname{GL}_n$.
Received: 23.10.2006
English version:
Journal of Mathematical Sciences (New York), 2007, Volume 145, Issue 1, Pages 4737–4750
DOI: https://doi.org/10.1007/s10958-007-0305-0
Bibliographic databases:
UDC: 512.5
Language: Russian
Citation: N. A. Vavilov, E. Ya. Perelman, “Polyvector representations of $\operatorname{GL}_n$”, Problems in the theory of representations of algebras and groups. Part 14, Zap. Nauchn. Sem. POMI, 338, POMI, St. Petersburg, 2006, 69–97; J. Math. Sci. (N. Y.), 145:1 (2007), 4737–4750
Citation in format AMSBIB
\Bibitem{VavPer06}
\by N.~A.~Vavilov, E.~Ya.~Perelman
\paper Polyvector representations of $\operatorname{GL}_n$
\inbook Problems in the theory of representations of algebras and groups. Part~14
\serial Zap. Nauchn. Sem. POMI
\yr 2006
\vol 338
\pages 69--97
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl166}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2354607}
\zmath{https://zbmath.org/?q=an:1125.20031}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2007
\vol 145
\issue 1
\pages 4737--4750
\crossref{https://doi.org/10.1007/s10958-007-0305-0}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34547499734}
Linking options:
  • https://www.mathnet.ru/eng/znsl166
  • https://www.mathnet.ru/eng/znsl/v338/p69
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:525
    Full-text PDF :166
    References:66
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024