Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2002, Volume 291, Pages 169–184 (Mi znsl1656)  

This article is cited in 1 scientific paper (total in 2 paper)

Unified quantization of three-dimensional bialgebras

E. V. Damaskinskya, P. P. Kulishb, M. A. Sokolovc

a Military Technical University
b St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
c St. Petersburg Institute of Machinery
Full-text PDF (192 kB) Citations (2)
Abstract: The joint multiparameter quantization of several three-dimensional Lie algebras is given. Among the quantized algebras one finds the Heisenberg algebra, the algebra of motions of the (pseudo)euclidean plane and $su(2)$. Such a quantization is possible because all of the mentioned algebras are dual to the same solvable Lie algebra. The explicit form of the number $R$-matrix is given which allows to encode some of the commutation relations in the form of the RTT-equation.
Received: 27.09.2002
English version:
Journal of Mathematical Sciences (New York), 2005, Volume 125, Issue 2, Pages 193–202
DOI: https://doi.org/10.1023/B:JOTH.0000049571.26334.b7
Bibliographic databases:
UDC: 517.9
Language: Russian
Citation: E. V. Damaskinsky, P. P. Kulish, M. A. Sokolov, “Unified quantization of three-dimensional bialgebras”, Questions of quantum field theory and statistical physics. Part 17, Zap. Nauchn. Sem. POMI, 291, POMI, St. Petersburg, 2002, 169–184; J. Math. Sci. (N. Y.), 125:2 (2005), 193–202
Citation in format AMSBIB
\Bibitem{DamKulSok02}
\by E.~V.~Damaskinsky, P.~P.~Kulish, M.~A.~Sokolov
\paper Unified quantization of three-dimensional bialgebras
\inbook Questions of quantum field theory and statistical physics. Part~17
\serial Zap. Nauchn. Sem. POMI
\yr 2002
\vol 291
\pages 169--184
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1656}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1948815}
\zmath{https://zbmath.org/?q=an:1095.17005}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2005
\vol 125
\issue 2
\pages 193--202
\crossref{https://doi.org/10.1023/B:JOTH.0000049571.26334.b7}
Linking options:
  • https://www.mathnet.ru/eng/znsl1656
  • https://www.mathnet.ru/eng/znsl/v291/p169
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:252
    Full-text PDF :61
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024