Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2008, Volume 354, Pages 132–149 (Mi znsl1648)  

This article is cited in 1 scientific paper (total in 1 paper)

Raleigh waves radiated from a point source at the boundary free from tensions

N. Ya. Kirpichnikova

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF (250 kB) Citations (1)
References:
Abstract: We consider such solutions of the elastic theory equations that suffer a discontinuity only at the boundary free from tensions (Raleigh waves). We find initial data for the complex intensity of the surface Raleigh waves in the two simple media. The first elastic medium fills in the half-space with Lame parameters and density depending on the depth. The second medium is bounded by a curve determined by natural equation. The parameters of the second medium depend on the arc-length along the curve. Bibl. – 12 titles.
Received: 19.05.2008
English version:
Journal of Mathematical Sciences (New York), 2008, Volume 155, Issue 3, Pages 409–418
DOI: https://doi.org/10.1007/s10958-008-9223-z
Bibliographic databases:
UDC: 517
Language: Russian
Citation: N. Ya. Kirpichnikova, “Raleigh waves radiated from a point source at the boundary free from tensions”, Mathematical problems in the theory of wave propagation. Part 37, Zap. Nauchn. Sem. POMI, 354, POMI, St. Petersburg, 2008, 132–149; J. Math. Sci. (N. Y.), 155:3 (2008), 409–418
Citation in format AMSBIB
\Bibitem{Kir08}
\by N.~Ya.~Kirpichnikova
\paper Raleigh waves radiated from a~point source at the boundary free from tensions
\inbook Mathematical problems in the theory of wave propagation. Part~37
\serial Zap. Nauchn. Sem. POMI
\yr 2008
\vol 354
\pages 132--149
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1648}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2008
\vol 155
\issue 3
\pages 409--418
\crossref{https://doi.org/10.1007/s10958-008-9223-z}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-56749161532}
Linking options:
  • https://www.mathnet.ru/eng/znsl1648
  • https://www.mathnet.ru/eng/znsl/v354/p132
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:230
    Full-text PDF :102
    References:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024