|
Zapiski Nauchnykh Seminarov POMI, 2008, Volume 353, Pages 54–61
(Mi znsl1631)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
An elementary proof of Tverberg's theorem
M. Yu. Zvagel'skii Saint-Petersburg State University
Abstract:
We give a new proof of Tverberg's familiar theorem saying that an arbitrary set of $q=(d+1)(p-1)+1$ points in $\mathbb R^d$ can be split into $p$ parts whose convex hulls have a nonempty intersection. Bibl. – 9 titles.
Received: 04.03.2007
Citation:
M. Yu. Zvagel'skii, “An elementary proof of Tverberg's theorem”, Geometry and topology. Part 10, Zap. Nauchn. Sem. POMI, 353, POMI, St. Petersburg, 2008, 54–61; J. Math. Sci. (N. Y.), 161:3 (2009), 384–387
Linking options:
https://www.mathnet.ru/eng/znsl1631 https://www.mathnet.ru/eng/znsl/v353/p54
|
Statistics & downloads: |
Abstract page: | 402 | Full-text PDF : | 156 | References: | 50 |
|