Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2008, Volume 353, Pages 39–53 (Mi znsl1630)  

This article is cited in 1 scientific paper (total in 1 paper)

Functional characterization of Vasil'ev invariants

V. A. Zapol'skii

Saint-Petersburg State University
Full-text PDF (270 kB) Citations (1)
References:
Abstract: A family of subsets of a manifold $X$ is called an $r$-cover of $X$ if any $r$ points of $X$ are contained in a set in the family. Let $X$ and $Y$ be two smooth manifolds, $\operatorname{Emb}(X,Y)$ the family of smooth embeddings, $M$ an Abelian group, and $F\colon\operatorname{Emb}(X,Y)\to M$ a functional. We say that $F$ has degree not greater than $r$ if for each finite open $r$-cover $\{U_i\}_{i\in I}$ of $X$ there exist functionals $F_i\colon\operatorname{Emb}(U_i,Y)\to M$, $i\in I$, such that for each $a\in\operatorname{Emb}(X,Y)$ we have
$$ F(a)=\sum_{i\in I}F_i(a|_{U_i}). $$

The main result is as follows.
Theorem. {\it An isotopy invariant $F\colon\operatorname{Emb}(S^1,\mathbb R^3)\to M$ has finite degree if and only if $F$ is a Vasil'ev invariant. If $F$ is a Vasil'ev invariant of order $r$, then the degree of $F$ is equal to $2r$.}
Bibl. – 3 titles.
Received: 23.11.2006
English version:
Journal of Mathematical Sciences (New York), 2009, Volume 161, Issue 3, Pages 375–383
DOI: https://doi.org/10.1007/s10958-009-9562-4
Bibliographic databases:
UDC: 515.143
Language: Russian
Citation: V. A. Zapol'skii, “Functional characterization of Vasil'ev invariants”, Geometry and topology. Part 10, Zap. Nauchn. Sem. POMI, 353, POMI, St. Petersburg, 2008, 39–53; J. Math. Sci. (N. Y.), 161:3 (2009), 375–383
Citation in format AMSBIB
\Bibitem{Zap08}
\by V.~A.~Zapol'skii
\paper Functional characterization of Vasil'ev invariants
\inbook Geometry and topology. Part~10
\serial Zap. Nauchn. Sem. POMI
\yr 2008
\vol 353
\pages 39--53
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1630}
\zmath{https://zbmath.org/?q=an:1181.57020}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2009
\vol 161
\issue 3
\pages 375--383
\crossref{https://doi.org/10.1007/s10958-009-9562-4}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70350697441}
Linking options:
  • https://www.mathnet.ru/eng/znsl1630
  • https://www.mathnet.ru/eng/znsl/v353/p39
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:200
    Full-text PDF :58
    References:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024