Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2008, Volume 353, Pages 14–26 (Mi znsl1627)  

This article is cited in 1 scientific paper (total in 1 paper)

A direct proof of Gromov's theorem

Yu. D. Buragoa, S. G. Malevb, D. I. Novikovb

a St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
b Faculty of Mathematics and Computer Science, Weizmann Institute of Science
Full-text PDF (241 kB) Citations (1)
References:
Abstract: A new proof of a theorem by Gromov is given: for any $C>0$ and integer $n>1$, there exists a function $\Delta_{C,n}(\delta)$ such that if the Gromov–Hausdorff distance between two complete Riemannian $n$-manifolds $V$ and $W$ is at most $\delta$, their sectional curvatures $|K_\sigma|$ do not exceed $C$, and their injectivity radii are at least $1/C$, then the Lipschitz distance between $V$ and $W$ is less than $\Delta_{C,n}(\delta)$, and $\Delta_{C,n}(\delta)\to0$ as $\delta\to0$. Bibl. – 6 titles.
Received: 20.07.2007
English version:
Journal of Mathematical Sciences (New York), 2009, Volume 161, Issue 3, Pages 361–367
DOI: https://doi.org/10.1007/s10958-009-9559-z
Bibliographic databases:
UDC: 514.7
Language: English
Citation: Yu. D. Burago, S. G. Malev, D. I. Novikov, “A direct proof of Gromov's theorem”, Geometry and topology. Part 10, Zap. Nauchn. Sem. POMI, 353, POMI, St. Petersburg, 2008, 14–26; J. Math. Sci. (N. Y.), 161:3 (2009), 361–367
Citation in format AMSBIB
\Bibitem{BurMalNov08}
\by Yu.~D.~Burago, S.~G.~Malev, D.~I.~Novikov
\paper A direct proof of Gromov's theorem
\inbook Geometry and topology. Part~10
\serial Zap. Nauchn. Sem. POMI
\yr 2008
\vol 353
\pages 14--26
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1627}
\zmath{https://zbmath.org/?q=an:1190.53036}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2009
\vol 161
\issue 3
\pages 361--367
\crossref{https://doi.org/10.1007/s10958-009-9559-z}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70449526799}
Linking options:
  • https://www.mathnet.ru/eng/znsl1627
  • https://www.mathnet.ru/eng/znsl/v353/p14
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:315
    Full-text PDF :110
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024