|
Zapiski Nauchnykh Seminarov POMI, 2008, Volume 353, Pages 5–13
(Mi znsl1626)
|
|
|
|
A lower bound for the distortion of a knotted curve
T. Bereznyaka, P. V. Svetlovb a Saint-Petersburg State University
b St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
We prove that the distortion of any knotted curve in $\mathbb R^3$ is greater than 4.76. This improves the result by John M. Sullivan and Elizabeth Denne. Bibl. – 3 titles.
Received: 18.12.2006
Citation:
T. Bereznyak, P. V. Svetlov, “A lower bound for the distortion of a knotted curve”, Geometry and topology. Part 10, Zap. Nauchn. Sem. POMI, 353, POMI, St. Petersburg, 2008, 5–13; J. Math. Sci. (N. Y.), 161:3 (2009), 355–360
Linking options:
https://www.mathnet.ru/eng/znsl1626 https://www.mathnet.ru/eng/znsl/v353/p5
|
Statistics & downloads: |
Abstract page: | 166 | Full-text PDF : | 60 | References: | 38 |
|