|
Zapiski Nauchnykh Seminarov POMI, 2002, Volume 290, Pages 168–176
(Mi znsl1617)
|
|
|
|
This article is cited in 5 scientific papers (total in 5 papers)
Inverse approximation theorem on an infinite union of segments
N. A. Shirokov Saint-Petersburg State University
Abstract:
Let $E=\bigcup\limits^{\infty}_{n=-\infty}[a_n, b_n]$, where $a_n$ and $b_n$ satisfy $0<c_1\le b_n-a_n\le c_2$, $0<c_3\le a_{n+1}-b_n\le c_4$ $n=0,\pm1,\pm2$. Denote by $B_{\sigma}$ the class of all entire functions of exponential type $\le\sigma$ bounded on the real axis. Under certain assumptions on the rate of approximation on $E$ of a bounded function $f$ by functions in $B_{\sigma}$ ($\sigma$ varies), we get some information about the smoothness of $f$.
Received: 25.10.2002
Citation:
N. A. Shirokov, “Inverse approximation theorem on an infinite union of segments”, Investigations on linear operators and function theory. Part 30, Zap. Nauchn. Sem. POMI, 290, POMI, St. Petersburg, 2002, 168–176; J. Math. Sci. (N. Y.), 124:2 (2004), 4935–4939
Linking options:
https://www.mathnet.ru/eng/znsl1617 https://www.mathnet.ru/eng/znsl/v290/p168
|
Statistics & downloads: |
Abstract page: | 183 | Full-text PDF : | 54 |
|