Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2002, Volume 290, Pages 168–176 (Mi znsl1617)  

This article is cited in 5 scientific papers (total in 5 papers)

Inverse approximation theorem on an infinite union of segments

N. A. Shirokov

Saint-Petersburg State University
Full-text PDF (172 kB) Citations (5)
Abstract: Let $E=\bigcup\limits^{\infty}_{n=-\infty}[a_n, b_n]$, where $a_n$ and $b_n$ satisfy $0<c_1\le b_n-a_n\le c_2$, $0<c_3\le a_{n+1}-b_n\le c_4$ $n=0,\pm1,\pm2$. Denote by $B_{\sigma}$ the class of all entire functions of exponential type $\le\sigma$ bounded on the real axis. Under certain assumptions on the rate of approximation on $E$ of a bounded function $f$ by functions in $B_{\sigma}$ ($\sigma$ varies), we get some information about the smoothness of $f$.
Received: 25.10.2002
English version:
Journal of Mathematical Sciences (New York), 2004, Volume 124, Issue 2, Pages 4935–4939
DOI: https://doi.org/10.1023/B:JOTH.0000042452.24203.a9
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: N. A. Shirokov, “Inverse approximation theorem on an infinite union of segments”, Investigations on linear operators and function theory. Part 30, Zap. Nauchn. Sem. POMI, 290, POMI, St. Petersburg, 2002, 168–176; J. Math. Sci. (N. Y.), 124:2 (2004), 4935–4939
Citation in format AMSBIB
\Bibitem{Shi02}
\by N.~A.~Shirokov
\paper Inverse approximation theorem on an infinite union of segments
\inbook Investigations on linear operators and function theory. Part~30
\serial Zap. Nauchn. Sem. POMI
\yr 2002
\vol 290
\pages 168--176
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1617}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1942541}
\zmath{https://zbmath.org/?q=an:1069.30004}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2004
\vol 124
\issue 2
\pages 4935--4939
\crossref{https://doi.org/10.1023/B:JOTH.0000042452.24203.a9}
Linking options:
  • https://www.mathnet.ru/eng/znsl1617
  • https://www.mathnet.ru/eng/znsl/v290/p168
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:183
    Full-text PDF :54
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024