|
Zapiski Nauchnykh Seminarov POMI, 2002, Volume 290, Pages 42–71
(Mi znsl1613)
|
|
|
|
This article is cited in 25 scientific papers (total in 25 papers)
Singular symmetric functionals
P. G. Doddsa, B. de Pagterb, A. A. Sedaevcd, E. M. Semenovc, F. A. Sukochevca a School of Informatics and Engineering at Flinders University
b Delft University of Technology
c Voronezh State University
d Voronezh State Academy of Building and Architecture
Abstract:
This is a continuation of the study started in [3]. A linear functional $f$ on a rearrangement invariant space $E$ on $(0, \infty)$ is said to be symmetric if for $x, y\in E$ the condition
$$
\int\limits^t_0x^*(s)sd\le\int\limits^t_0y^*(s)ds,\quad t>0,
$$
implies that $f(x)\le f(y)$. A new construction of singular symmetric functionals on the Marcinkiewicz space $M(\psi)$ is presented and studied in detail. A necessary and sufficient condition in terms of $\psi$ is obtained for the seminorms equal to distance to $M(\psi)\cap L_1$ and $M(\psi)\cap L_{\infty}$ to be recoverable in terms of the symmetric singular functionals on $M(\psi)$.
Received: 13.06.2002
Citation:
P. G. Dodds, B. De Pagter, A. A. Sedaev, E. M. Semenov, F. A. Sukochev, “Singular symmetric functionals”, Investigations on linear operators and function theory. Part 30, Zap. Nauchn. Sem. POMI, 290, POMI, St. Petersburg, 2002, 42–71; J. Math. Sci. (N. Y.), 124:2 (2004), 4867–4885
Linking options:
https://www.mathnet.ru/eng/znsl1613 https://www.mathnet.ru/eng/znsl/v290/p42
|
Statistics & downloads: |
Abstract page: | 272 | Full-text PDF : | 81 |
|