|
Zapiski Nauchnykh Seminarov POMI, 2002, Volume 290, Pages 5–26
(Mi znsl1610)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
Sharp Kolmogorov-type inequalities for moduli of continuity and best approximations by trigonometric polynomials and splines
O. L. Vinogradov, V. V. Zhuk Saint-Petersburg State University
Abstract:
In what follows $C$ is the space of $2\pi$-periodic continuous functions; $P$ is a seminorm defined on $C$, shift-invariant, and majorized by the uniform norm; $\omega_m(f, h)_P$ is the $m$th modulus of continuity of a function $f$ with step $h$ and calculated with respect to $P$; $\mathscr K_r=\frac4\pi\sum\limits^{\infty}_{l=0}\frac{(-1)^{l(r+1)}}{(2l+1)^{r+1}}$, $B_r(x)=-\frac{r!}{2^{r-1}\pi^r}\sum\limits^{\infty}_{k-1}\frac{\cos(2k\pi x-r\pi/2)}{k^r}$ $(r\in\mathbb N)$, $B_0(x)=1$, $\gamma_r=\frac{B_r(\frac12)}{r!}$; $(k)=k_1+\cdots+k_m$,
\begin{gather*}
K_{r,m}=\{k\in\mathbb Z^m_+:0\le k_{\nu}\le r+\nu-2-k_1-\dots-k_{\nu-1}\},
\\
A_{r,0}=\frac2{r!}\int^{1/2}_0\left|B_r(t)-B_r\left(\frac12\right)\right|\,dt,
\\
A_{r, m}=\sum_{k\in K_{r,m}}\left(\prod^m_{j=1}|\gamma_{k_j}|\right)A_{r+m-(k), 0}, \quad \Sigma_{r, m}=\sum^{m-1}_{\nu=0}2^{\nu}A_{r,\nu},
\\
M_{r, m}(f, h)_P=\begin{cases}
\Sigma^{-1}_{r,m}\sum\limits^{m-1}_{\nu=0}A_{r,\nu}\omega_{\nu}(f,h)_P,&\text{</nomathmode><mathmode>$r$ is even},
\Sigma^{-1}_{r, m}(\dfrac{A_{r, 0}}2\omega_1(f, h)_P+\sum\limits^{m-1}_{\nu=1}A_{r,\nu}\omega_{\nu}(f,h)_P),&\text{$r$ is odd}.
\end{cases}
\end{gather*} </mathmode><nomathmode>
Theorem 1. \textit{Let $r,m\in\mathbb N$, $n,\lambda>0$, $f\in C^{(r+m)}$. Then}
$$
\begin{gathered}
P(f^{(m)})\le\lambda^r\left\{\Sigma_{r, m}+2^m\sum_{k\in K_{r, m}}\left(\prod^m_{j=1}|\gamma_{k_j}|\right)\frac{\mathscr K_{r+m-(k)}}{\lambda^{r+m-(k)}}\right\}
\\
\times\max\left\{\left(\frac{\omega_m(f,\tfrac{\lambda}n)_P}{\mathscr K_{r+m}2^m}\right)^{\frac r{r+m}}M^{\frac m{r+m}}_{r, m},\left(f^{(r+m)},\frac{\lambda}n\right), \frac{n^m\omega_m(f,\frac{\lambda}n)_P}{\mathscr K_{r+m}2^m}\right\}.
\end{gathered}
$$
For some values of $\lambda$ and seminorms related to best approximations by trigonometric polynomials and splines in the uniform and integral metrics, the inequalities are sharp.
Received: 22.10.2002
Citation:
O. L. Vinogradov, V. V. Zhuk, “Sharp Kolmogorov-type inequalities for moduli of continuity and best approximations by trigonometric polynomials and splines”, Investigations on linear operators and function theory. Part 30, Zap. Nauchn. Sem. POMI, 290, POMI, St. Petersburg, 2002, 5–26; J. Math. Sci. (N. Y.), 124:2 (2004), 4845–4857
Linking options:
https://www.mathnet.ru/eng/znsl1610 https://www.mathnet.ru/eng/znsl/v290/p5
|
Statistics & downloads: |
Abstract page: | 274 | Full-text PDF : | 106 |
|