Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2002, Volume 290, Pages 5–26 (Mi znsl1610)  

This article is cited in 3 scientific papers (total in 3 papers)

Sharp Kolmogorov-type inequalities for moduli of continuity and best approximations by trigonometric polynomials and splines

O. L. Vinogradov, V. V. Zhuk

Saint-Petersburg State University
Full-text PDF (262 kB) Citations (3)
Abstract: In what follows $C$ is the space of $2\pi$-periodic continuous functions; $P$ is a seminorm defined on $C$, shift-invariant, and majorized by the uniform norm; $\omega_m(f, h)_P$ is the $m$th modulus of continuity of a function $f$ with step $h$ and calculated with respect to $P$; $\mathscr K_r=\frac4\pi\sum\limits^{\infty}_{l=0}\frac{(-1)^{l(r+1)}}{(2l+1)^{r+1}}$, $B_r(x)=-\frac{r!}{2^{r-1}\pi^r}\sum\limits^{\infty}_{k-1}\frac{\cos(2k\pi x-r\pi/2)}{k^r}$ $(r\in\mathbb N)$, $B_0(x)=1$, $\gamma_r=\frac{B_r(\frac12)}{r!}$; $(k)=k_1+\cdots+k_m$,
\begin{gather*} K_{r,m}=\{k\in\mathbb Z^m_+:0\le k_{\nu}\le r+\nu-2-k_1-\dots-k_{\nu-1}\}, \\ A_{r,0}=\frac2{r!}\int^{1/2}_0\left|B_r(t)-B_r\left(\frac12\right)\right|\,dt, \\ A_{r, m}=\sum_{k\in K_{r,m}}\left(\prod^m_{j=1}|\gamma_{k_j}|\right)A_{r+m-(k), 0}, \quad \Sigma_{r, m}=\sum^{m-1}_{\nu=0}2^{\nu}A_{r,\nu}, \\ M_{r, m}(f, h)_P=\begin{cases} \Sigma^{-1}_{r,m}\sum\limits^{m-1}_{\nu=0}A_{r,\nu}\omega_{\nu}(f,h)_P,&\text{</nomathmode><mathmode>$r$ is even},
\Sigma^{-1}_{r, m}(\dfrac{A_{r, 0}}2\omega_1(f, h)_P+\sum\limits^{m-1}_{\nu=1}A_{r,\nu}\omega_{\nu}(f,h)_P),&\text{$r$ is odd}. \end{cases} \end{gather*}
</mathmode><nomathmode>
Theorem 1. \textit{Let $r,m\in\mathbb N$, $n,\lambda>0$, $f\in C^{(r+m)}$. Then}
$$ \begin{gathered} P(f^{(m)})\le\lambda^r\left\{\Sigma_{r, m}+2^m\sum_{k\in K_{r, m}}\left(\prod^m_{j=1}|\gamma_{k_j}|\right)\frac{\mathscr K_{r+m-(k)}}{\lambda^{r+m-(k)}}\right\} \\ \times\max\left\{\left(\frac{\omega_m(f,\tfrac{\lambda}n)_P}{\mathscr K_{r+m}2^m}\right)^{\frac r{r+m}}M^{\frac m{r+m}}_{r, m},\left(f^{(r+m)},\frac{\lambda}n\right), \frac{n^m\omega_m(f,\frac{\lambda}n)_P}{\mathscr K_{r+m}2^m}\right\}. \end{gathered} $$

For some values of $\lambda$ and seminorms related to best approximations by trigonometric polynomials and splines in the uniform and integral metrics, the inequalities are sharp.
Received: 22.10.2002
English version:
Journal of Mathematical Sciences (New York), 2004, Volume 124, Issue 2, Pages 4845–4857
DOI: https://doi.org/10.1023/B:JOTH.0000042445.77567.18
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: O. L. Vinogradov, V. V. Zhuk, “Sharp Kolmogorov-type inequalities for moduli of continuity and best approximations by trigonometric polynomials and splines”, Investigations on linear operators and function theory. Part 30, Zap. Nauchn. Sem. POMI, 290, POMI, St. Petersburg, 2002, 5–26; J. Math. Sci. (N. Y.), 124:2 (2004), 4845–4857
Citation in format AMSBIB
\Bibitem{VinZhu02}
\by O.~L.~Vinogradov, V.~V.~Zhuk
\paper Sharp Kolmogorov-type inequalities for moduli of continuity and best approximations by trigonometric polynomials and splines
\inbook Investigations on linear operators and function theory. Part~30
\serial Zap. Nauchn. Sem. POMI
\yr 2002
\vol 290
\pages 5--26
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1610}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1942534}
\zmath{https://zbmath.org/?q=an:1078.42001}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2004
\vol 124
\issue 2
\pages 4845--4857
\crossref{https://doi.org/10.1023/B:JOTH.0000042445.77567.18}
Linking options:
  • https://www.mathnet.ru/eng/znsl1610
  • https://www.mathnet.ru/eng/znsl/v290/p5
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:274
    Full-text PDF :106
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024