Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2002, Volume 288, Pages 232–255 (Mi znsl1591)  

This article is cited in 7 scientific papers (total in 7 papers)

Absolute continuity of the spectrum of the periodic Maxwell operator in a layer

T. A. Suslina

St. Petersburg State University, Faculty of Physics
Full-text PDF (265 kB) Citations (7)
Abstract: We study the Maxwell operator in a layer $\mathbb R^2\times(0,T)$. It is assumed that an electric permittivity $\varepsilon(\mathbf x)$ and a magnetic permeability $\mu(\mathbf x)$ are periodic along the layer. On the boundary of the layer, we impose conditions of ideal conductivity. Under wide assumptions on $\varepsilon(\mathbf x)$ and $\mu(\mathbf x)$, it is shown that the spectrum of the Maxwell operator is absolutely continuous.
Received: 10.06.2002
English version:
Journal of Mathematical Sciences (New York), 2004, Volume 123, Issue 6, Pages 5654–4667
DOI: https://doi.org/10.1023/B:JOTH.0000041481.09722.86
Bibliographic databases:
UDC: 517
Language: Russian
Citation: T. A. Suslina, “Absolute continuity of the spectrum of the periodic Maxwell operator in a layer”, Boundary-value problems of mathematical physics and related problems of function theory. Part 32, Zap. Nauchn. Sem. POMI, 288, POMI, St. Petersburg, 2002, 232–255; J. Math. Sci. (N. Y.), 123:6 (2004), 5654–4667
Citation in format AMSBIB
\Bibitem{Sus02}
\by T.~A.~Suslina
\paper Absolute continuity of the spectrum of the periodic Maxwell operator in a layer
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~32
\serial Zap. Nauchn. Sem. POMI
\yr 2002
\vol 288
\pages 232--255
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1591}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1923552}
\zmath{https://zbmath.org/?q=an:1068.35081}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2004
\vol 123
\issue 6
\pages 5654--4667
\crossref{https://doi.org/10.1023/B:JOTH.0000041481.09722.86}
Linking options:
  • https://www.mathnet.ru/eng/znsl1591
  • https://www.mathnet.ru/eng/znsl/v288/p232
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:249
    Full-text PDF :83
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024