Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2002, Volume 288, Pages 178–203 (Mi znsl1589)  

This article is cited in 4 scientific papers (total in 4 papers)

Estimates of deviations for generalized Newtonian fluids

S. I. Repin

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF (271 kB) Citations (4)
Abstract: The paper is concerned with deriving extimates of deviations from exact solutions for stationary models of viscous incompressible fluids. It is shown that if a function compared with exact solution is subdject to the incompressibility condition, then he deviation majorant consists of terms that penalize inaccuracy in the equilibrium equation and theological relation defined by a certain dissipative potential. If such a function does not satisfy the incompressibility condition, then an additional term depends on the constant in the Ladyzhenskaya–Babus̆ka–Brezzi.
Received: 31.05.2002
English version:
Journal of Mathematical Sciences (New York), 2004, Volume 123, Issue 6, Pages 4621–4636
DOI: https://doi.org/10.1023/B:JOTH.0000041479.59584.10
Bibliographic databases:
UDC: 517.9
Language: English
Citation: S. I. Repin, “Estimates of deviations for generalized Newtonian fluids”, Boundary-value problems of mathematical physics and related problems of function theory. Part 32, Zap. Nauchn. Sem. POMI, 288, POMI, St. Petersburg, 2002, 178–203; J. Math. Sci. (N. Y.), 123:6 (2004), 4621–4636
Citation in format AMSBIB
\Bibitem{Rep02}
\by S.~I.~Repin
\paper Estimates of deviations for generalized Newtonian fluids
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~32
\serial Zap. Nauchn. Sem. POMI
\yr 2002
\vol 288
\pages 178--203
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1589}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1923550}
\zmath{https://zbmath.org/?q=an:1068.35112}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2004
\vol 123
\issue 6
\pages 4621--4636
\crossref{https://doi.org/10.1023/B:JOTH.0000041479.59584.10}
Linking options:
  • https://www.mathnet.ru/eng/znsl1589
  • https://www.mathnet.ru/eng/znsl/v288/p178
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:298
    Full-text PDF :72
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024