|
Zapiski Nauchnykh Seminarov POMI, 2002, Volume 288, Pages 79–99
(Mi znsl1583)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
Interior regularity for free and constrained local minimizers of variational integrals under general growth and ellipticity conditions
M. Bildhauer, M. Fuchs Saarland University
Abstract:
We consider strictly convex energy dencities $f\colon\mathbb R^n\to\mathbb R$ under nonstandart growth conditions. More precisely, we assume that for some constants $\lambda$, $\Lambda$ and for all $Z,Y\in\mathbb R^n$ the inequality
$$
\lambda(1+|Z|^2)^{\frac{-\mu}2}|Y|^2\le D^2f(Z)(Y,Y)\le\Lambda(1+|Z|^2)^{\frac{q-2}2}|Y|^2
$$
holds with exponents $\mu\in\mathbb R$ and $q>1$. If $u$ denotes a bounded local minimizer of the energy $\int f(\nabla\omega)dx$ subject to a constraint of the form $\omega\ge\psi$ a.e. with a given obstacle $\psi\in C^{1,\alpha}(\Omega)$, then we prove local $C^{1,\alpha}$-regularity of $u$ provided that $q<4-\mu$. This result substantially improves what is known up to now (see, for instance, [8, 7, 13]), even for the case of unconstrained local minimizers.
Received: 21.05.2002
Citation:
M. Bildhauer, M. Fuchs, “Interior regularity for free and constrained local minimizers of variational integrals under general growth and ellipticity conditions”, Boundary-value problems of mathematical physics and related problems of function theory. Part 32, Zap. Nauchn. Sem. POMI, 288, POMI, St. Petersburg, 2002, 79–99; J. Math. Sci. (N. Y.), 123:6 (2004), 4565–4576
Linking options:
https://www.mathnet.ru/eng/znsl1583 https://www.mathnet.ru/eng/znsl/v288/p79
|
Statistics & downloads: |
Abstract page: | 147 | Full-text PDF : | 56 |
|