Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2002, Volume 288, Pages 79–99 (Mi znsl1583)  

This article is cited in 3 scientific papers (total in 3 papers)

Interior regularity for free and constrained local minimizers of variational integrals under general growth and ellipticity conditions

M. Bildhauer, M. Fuchs

Saarland University
Full-text PDF (266 kB) Citations (3)
Abstract: We consider strictly convex energy dencities $f\colon\mathbb R^n\to\mathbb R$ under nonstandart growth conditions. More precisely, we assume that for some constants $\lambda$, $\Lambda$ and for all $Z,Y\in\mathbb R^n$ the inequality
$$ \lambda(1+|Z|^2)^{\frac{-\mu}2}|Y|^2\le D^2f(Z)(Y,Y)\le\Lambda(1+|Z|^2)^{\frac{q-2}2}|Y|^2 $$
holds with exponents $\mu\in\mathbb R$ and $q>1$. If $u$ denotes a bounded local minimizer of the energy $\int f(\nabla\omega)dx$ subject to a constraint of the form $\omega\ge\psi$ a.e. with a given obstacle $\psi\in C^{1,\alpha}(\Omega)$, then we prove local $C^{1,\alpha}$-regularity of $u$ provided that $q<4-\mu$. This result substantially improves what is known up to now (see, for instance, [8, 7, 13]), even for the case of unconstrained local minimizers.
Received: 21.05.2002
English version:
Journal of Mathematical Sciences (New York), 2004, Volume 123, Issue 6, Pages 4565–4576
DOI: https://doi.org/10.1023/B:JOTH.0000041474.73595.d3
Bibliographic databases:
UDC: 517
Language: English
Citation: M. Bildhauer, M. Fuchs, “Interior regularity for free and constrained local minimizers of variational integrals under general growth and ellipticity conditions”, Boundary-value problems of mathematical physics and related problems of function theory. Part 32, Zap. Nauchn. Sem. POMI, 288, POMI, St. Petersburg, 2002, 79–99; J. Math. Sci. (N. Y.), 123:6 (2004), 4565–4576
Citation in format AMSBIB
\Bibitem{BilFuc02}
\by M.~Bildhauer, M.~Fuchs
\paper Interior regularity for free and constrained local minimizers of variational integrals under general growth and ellipticity conditions
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~32
\serial Zap. Nauchn. Sem. POMI
\yr 2002
\vol 288
\pages 79--99
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1583}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1923545}
\zmath{https://zbmath.org/?q=an:1073.49029}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2004
\vol 123
\issue 6
\pages 4565--4576
\crossref{https://doi.org/10.1023/B:JOTH.0000041474.73595.d3}
Linking options:
  • https://www.mathnet.ru/eng/znsl1583
  • https://www.mathnet.ru/eng/znsl/v288/p79
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:140
    Full-text PDF :54
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024