Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2002, Volume 286, Pages 200–214 (Mi znsl1577)  

The symmetric squares of Hecke $L$-funktions and Fourier coefficients of cusp forms

O. M. Fomenko

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract: Let $S_k(\Gamma_0(N))$ be the space of cusp forms of even weight $k$ for $\Gamma_0(N)$, let $\mathscr F_0$ be the set of all newforms in $S_k(\Gamma_0(N))$, and let $\mathscr H_2(s,f)$ be the symmetric square of the Hecke $L$-function of a form $f\in\mathscr F_0$. It is proved that for $N=p$ we have
$$ \sum_{f\in\mathscr F_0,\mathscr H_2(1/2,f)\ne0}1\gg N^{1-\varepsilon}, $$
where the $\ll$-constant depends only on $\varepsilon$ and $k$. Let $f(z)\in S_k(\Gamma(N))$:
$$ f(z)=\sum^{\infty}_{n=1}a_f(n)e^{2\pi inz}, \qquad a_f(n)n^{-(k-1)/2}=b_f(n). $$
The distribution of values of the sums
$$ \sum_{n\le X}b_f(n) \quad\text{and}\quad \sum_{n\le X}b_f(n)^2 $$
for increasing $X$ and $N$ is studied.
Received: 06.05.2002
English version:
Journal of Mathematical Sciences (New York), 2004, Volume 122, Issue 6, Pages 3699–3708
DOI: https://doi.org/10.1023/B:JOTH.0000035246.29112.8c
Bibliographic databases:
UDC: 511.466+517.683
Language: Russian
Citation: O. M. Fomenko, “The symmetric squares of Hecke $L$-funktions and Fourier coefficients of cusp forms”, Analytical theory of numbers and theory of functions. Part 18, Zap. Nauchn. Sem. POMI, 286, POMI, St. Petersburg, 2002, 200–214; J. Math. Sci. (N. Y.), 122:6 (2004), 3699–3708
Citation in format AMSBIB
\Bibitem{Fom02}
\by O.~M.~Fomenko
\paper The symmetric squares of Hecke $L$-funktions and Fourier coefficients of cusp forms
\inbook Analytical theory of numbers and theory of functions. Part~18
\serial Zap. Nauchn. Sem. POMI
\yr 2002
\vol 286
\pages 200--214
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1577}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1937378}
\zmath{https://zbmath.org/?q=an:1077.11037}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2004
\vol 122
\issue 6
\pages 3699--3708
\crossref{https://doi.org/10.1023/B:JOTH.0000035246.29112.8c}
Linking options:
  • https://www.mathnet.ru/eng/znsl1577
  • https://www.mathnet.ru/eng/znsl/v286/p200
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:185
    Full-text PDF :80
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024