|
Zapiski Nauchnykh Seminarov POMI, 2002, Volume 286, Pages 200–214
(Mi znsl1577)
|
|
|
|
The symmetric squares of Hecke $L$-funktions and Fourier coefficients of cusp forms
O. M. Fomenko St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
Let $S_k(\Gamma_0(N))$ be the space of cusp forms of even weight $k$ for $\Gamma_0(N)$, let $\mathscr F_0$ be the set of all newforms in $S_k(\Gamma_0(N))$, and let $\mathscr H_2(s,f)$ be the symmetric square of the Hecke $L$-function of a form $f\in\mathscr F_0$. It is proved that for $N=p$ we have
$$
\sum_{f\in\mathscr F_0,\mathscr H_2(1/2,f)\ne0}1\gg N^{1-\varepsilon},
$$
where the $\ll$-constant depends only on $\varepsilon$ and $k$. Let $f(z)\in S_k(\Gamma(N))$:
$$
f(z)=\sum^{\infty}_{n=1}a_f(n)e^{2\pi inz}, \qquad a_f(n)n^{-(k-1)/2}=b_f(n).
$$
The distribution of values of the sums
$$
\sum_{n\le X}b_f(n) \quad\text{and}\quad \sum_{n\le X}b_f(n)^2
$$
for increasing $X$ and $N$ is studied.
Received: 06.05.2002
Citation:
O. M. Fomenko, “The symmetric squares of Hecke $L$-funktions and Fourier coefficients of cusp forms”, Analytical theory of numbers and theory of functions. Part 18, Zap. Nauchn. Sem. POMI, 286, POMI, St. Petersburg, 2002, 200–214; J. Math. Sci. (N. Y.), 122:6 (2004), 3699–3708
Linking options:
https://www.mathnet.ru/eng/znsl1577 https://www.mathnet.ru/eng/znsl/v286/p200
|
Statistics & downloads: |
Abstract page: | 185 | Full-text PDF : | 80 |
|