Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2002, Volume 286, Pages 179–199 (Mi znsl1576)  

This article is cited in 6 scientific papers (total in 6 papers)

Class numbers of indefinite binary quadratic forms and the residual indices of integers modulo $p$

O. M. Fomenko

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF (247 kB) Citations (6)
Abstract: Let $h(d)$ be the class number of properly equivalent primitive binary quadratic forms $ax^2+bxy+cy^2$ with discriminant $d=b^2-4ac$. The behavior of $h(5p^2)$, where $p$ runs over primes, is studied. It is easy to show that there are few discriminants of the form $5p^2$ with large class numbers. In fact, one has the estimate
$$ \#\bigl\{p\le x\mid h(5p^2)>x^{1-\delta}\bigr\}\ll x^{2\delta}, $$
where $\delta$ is an arbitrary constant number in $(0;1/2)$.
Assume that $\alpha(x)$ is a positive function monotonically increasing for $x\to\infty$ and $\alpha(x)\to\infty$. If
$$ \alpha(x)\le(\log x)(\log\log x)^{-3}, $$
then (assuming the validity of the extended Riemann hypothesis for certain Dedekind zeta-functions) it is proved
$$ \#\biggl\{p\le x\biggm|\biggl(\frac5p\biggr)=1,\ h(5p^2)>\alpha(x)\biggr\}\asymp\frac{\pi(x)}{\alpha(x)}. $$
It is also proved that for an infinite set of $p$ with $\bigl(\frac5p\bigr)=1$ one has the inequality
$$ h(5p^2)\ge\frac{\log\log p}{\log_kp}, $$
where $\log_kp$ is the $k$-fold iterated logarithm ($k$ is an arbitrary integer, $k\ge3$). Results on mean values of $h(5p^2)$ are also obtained. Similar facts are true for the residual indices of an integer $a\ge2$ modulo $p$:
$$ r(a,p)=\frac{p-1}{o(a,p)}, $$
where $o(a,p)$ is the order of $a$ modulo $p$.
Received: 26.06.2002
English version:
Journal of Mathematical Sciences (New York), 2004, Volume 122, Issue 6, Pages 3685–3698
DOI: https://doi.org/10.1023/B:JOTH.0000035245.77356.76
Bibliographic databases:
UDC: 511.466+517.863
Language: Russian
Citation: O. M. Fomenko, “Class numbers of indefinite binary quadratic forms and the residual indices of integers modulo $p$”, Analytical theory of numbers and theory of functions. Part 18, Zap. Nauchn. Sem. POMI, 286, POMI, St. Petersburg, 2002, 179–199; J. Math. Sci. (N. Y.), 122:6 (2004), 3685–3698
Citation in format AMSBIB
\Bibitem{Fom02}
\by O.~M.~Fomenko
\paper Class numbers of indefinite binary quadratic forms and the residual indices of integers modulo~$p$
\inbook Analytical theory of numbers and theory of functions. Part~18
\serial Zap. Nauchn. Sem. POMI
\yr 2002
\vol 286
\pages 179--199
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1576}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1937377}
\zmath{https://zbmath.org/?q=an:1077.11068}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2004
\vol 122
\issue 6
\pages 3685--3698
\crossref{https://doi.org/10.1023/B:JOTH.0000035245.77356.76}
Linking options:
  • https://www.mathnet.ru/eng/znsl1576
  • https://www.mathnet.ru/eng/znsl/v286/p179
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:267
    Full-text PDF :73
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024