|
Zapiski Nauchnykh Seminarov POMI, 2002, Volume 286, Pages 169–178
(Mi znsl1575)
|
|
|
|
This article is cited in 5 scientific papers (total in 5 papers)
On Epstein's zeta-function
O. M. Fomenko St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
Let $Q(x_1,x_2,x_3)=x^2_1+x^2_2+x^2_3$, and let $\zeta(s;Q)$ be Epstein's zeta-function of the form $Q$. It is proved that for $|t|>C>0$ one has the estimate
$$
\zeta(1+it;Q)\ll|t|^{1/4+\varepsilon}.
$$
Received: 06.05.2002
Citation:
O. M. Fomenko, “On Epstein's zeta-function”, Analytical theory of numbers and theory of functions. Part 18, Zap. Nauchn. Sem. POMI, 286, POMI, St. Petersburg, 2002, 169–178; J. Math. Sci. (N. Y.), 122:6 (2004), 3679–3684
Linking options:
https://www.mathnet.ru/eng/znsl1575 https://www.mathnet.ru/eng/znsl/v286/p169
|
Statistics & downloads: |
Abstract page: | 308 | Full-text PDF : | 105 |
|