Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2002, Volume 286, Pages 126–147 (Mi znsl1572)  

This article is cited in 5 scientific papers (total in 5 papers)

Problems on extremal decomposition of the Riemann sphere. II

G. V. Kuz'mina

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF (325 kB) Citations (5)
Abstract: In the present paper, we solve some problems on the maximum of the weighted sum
$$ \sum^n_{k=1}\alpha^2_kM(D_k, a_k) $$
($M(D_k, a_k)$ denote the reduced module of the domian $D_k$ with respect to the point $a_k\in D_k$) in the family of all nonoverlapping simple connected domians $D_k$, $a_k\in D_k$, $k=1,\dots,n$, where the points $a_1,\dots,a_n$, are free parameters satisfying certain geometric conditions. The proofs involve a version of the method of extremal metric, which reveals a certain symmetry of the extremal system of the points $a_1,\dots,a_n$. The problem on the maximum of the conformal invariant
\begin{equation} 2\pi\sum^5_{k=1}M(D_k,b_k)-\frac12\sum_{1\le b_k<b_l<5}\log|b_k-b_l| \tag{*} \end{equation}
for all systems of points $b_1,\dots,b_s$ is also considered. In the case where the systems $\{b_1,\dots,b_5\}$ are symmetric with respect to a certain circle, the problem was solved earlier. A theorem formulated in the author's previous work asserts that the maximum of invariant (*) for all system of points $\{b_1,\dots,b_5\}$ is attained in a certain well-defined case. In the present work, it is shown that the proof of this theorem contains mistake. A possible proof of the theorem is outlined.
Received: 25.12.2001
Revised: 25.03.2002
English version:
Journal of Mathematical Sciences (New York), 2004, Volume 122, Issue 6, Pages 3654–3666
DOI: https://doi.org/10.1023/B:JOTH.0000035241.35530.6f
Bibliographic databases:
UDC: 517.54
Language: Russian
Citation: G. V. Kuz'mina, “Problems on extremal decomposition of the Riemann sphere. II”, Analytical theory of numbers and theory of functions. Part 18, Zap. Nauchn. Sem. POMI, 286, POMI, St. Petersburg, 2002, 126–147; J. Math. Sci. (N. Y.), 122:6 (2004), 3654–3666
Citation in format AMSBIB
\Bibitem{Kuz02}
\by G.~V.~Kuz'mina
\paper Problems on extremal decomposition of the Riemann sphere.~II
\inbook Analytical theory of numbers and theory of functions. Part~18
\serial Zap. Nauchn. Sem. POMI
\yr 2002
\vol 286
\pages 126--147
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1572}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1937373}
\zmath{https://zbmath.org/?q=an:1086.30027}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2004
\vol 122
\issue 6
\pages 3654--3666
\crossref{https://doi.org/10.1023/B:JOTH.0000035241.35530.6f}
Linking options:
  • https://www.mathnet.ru/eng/znsl1572
  • https://www.mathnet.ru/eng/znsl/v286/p126
    Cycle of papers
    This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:319
    Full-text PDF :62
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024