|
Zapiski Nauchnykh Seminarov POMI, 2002, Volume 286, Pages 36–39
(Mi znsl1564)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
On the Pellian equation
E. P. Golubeva St. Petersburg State University of Telecommunications
Abstract:
Let $\varepsilon(d)$ be the least solution of the Pellian equation $x^2-dy^2=1$. It is proved that there exists a sequence of values of $d$ having a positive density and such that $\varepsilon(d)>d^{2-\delta}$, where $\delta$ is an arbitrary positive constant.
Received: 29.08.2002
Citation:
E. P. Golubeva, “On the Pellian equation”, Analytical theory of numbers and theory of functions. Part 18, Zap. Nauchn. Sem. POMI, 286, POMI, St. Petersburg, 2002, 36–39; J. Math. Sci. (N. Y.), 122:6 (2004), 3600–3602
Linking options:
https://www.mathnet.ru/eng/znsl1564 https://www.mathnet.ru/eng/znsl/v286/p36
|
Statistics & downloads: |
Abstract page: | 203 | Full-text PDF : | 88 |
|