Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2002, Volume 285, Pages 88–108 (Mi znsl1554)  

This article is cited in 3 scientific papers (total in 3 papers)

Diffraction of plane ellastic waves of the vertical polarization on a small inhomogeneity inside an ellastic layer

N. Ya. Kirpichnikova, L. A. Svirkina, V. B. Philippov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF (267 kB) Citations (3)
Abstract: The problem of diffraction of the ellastic plane wave of the vertical polarization on a small inhomogeneity lying in a layer is investigated. The layer is situated on the ellastic half-space. We consider three-layer model of isotropic ellastic theory. The inhomogeneity is a circular cylinder, radius $a$ of which is small in comparision with the length of the falling wave. The insident wave is supposed to be polarized ortogonal to the axis of the cylinder.
Diffraction addition from the small inhomogeneity in the wave, reflected from the elastic layer, is proved to have the more order than the first with respect to parameter $(ka)^2/\sqrt{kr}$, $kr\gg 1$, $ka\ll 1$, where $k$ is the wave number, $r$ is distance between the inhomogeneity and observer point. The small inhomogeneity generates the cyliner wave, intensifity of which is proportional to the area of the inhomogeneity cross-section, to the jumps of the square velocities in the layer and in the inhomogeneity.
The diffraction coefficients, determining the radiation pattern of the scattering wave are obtained. The scattering of vertical polarised field by the inhomogeneity is behaved as scattering by a point source for $kr\gg 1$. The power of the scattering is proportional to the area of the inhomogeneous cross-section, the jumps of the densities $\rho_i$, $i=0,1,2,3$ and the jumps of Lame parameters $\mu_i$, $\lambda_i$ of the media and the inhomogeneity.
Received: 04.03.2002
English version:
Journal of Mathematical Sciences (New York), 2004, Volume 122, Issue 5, Pages 3502–3513
DOI: https://doi.org/10.1023/B:JOTH.0000034029.24232.15
Bibliographic databases:
UDC: 517.9
Language: Russian
Citation: N. Ya. Kirpichnikova, L. A. Svirkina, V. B. Philippov, “Diffraction of plane ellastic waves of the vertical polarization on a small inhomogeneity inside an ellastic layer”, Mathematical problems in the theory of wave propagation. Part 31, Zap. Nauchn. Sem. POMI, 285, POMI, St. Petersburg, 2002, 88–108; J. Math. Sci. (N. Y.), 122:5 (2004), 3502–3513
Citation in format AMSBIB
\Bibitem{KirSviPhi02}
\by N.~Ya.~Kirpichnikova, L.~A.~Svirkina, V.~B.~Philippov
\paper Diffraction of plane ellastic waves of the vertical polarization on a~small inhomogeneity inside an ellastic layer
\inbook Mathematical problems in the theory of wave propagation. Part~31
\serial Zap. Nauchn. Sem. POMI
\yr 2002
\vol 285
\pages 88--108
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1554}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1911113}
\zmath{https://zbmath.org/?q=an:1079.74561}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2004
\vol 122
\issue 5
\pages 3502--3513
\crossref{https://doi.org/10.1023/B:JOTH.0000034029.24232.15}
Linking options:
  • https://www.mathnet.ru/eng/znsl1554
  • https://www.mathnet.ru/eng/znsl/v285/p88
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:271
    Full-text PDF :118
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024