|
Zapiski Nauchnykh Seminarov POMI, 2002, Volume 285, Pages 33–38
(Mi znsl1550)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
On behavior of the solution of a generalized Cauchy problem for the wave equation at infinity
A. S. Blagoveshchenskii, A. A. Novitskaya Saint-Petersburg State University
Abstract:
We prove an asymptotic formula for a Cauchy problem for the wave equation for a point $(x,t)$ moving to infinity in a characteristic direction. Initial data are generalized functions with a compact support.
Received: 20.12.2001
Citation:
A. S. Blagoveshchenskii, A. A. Novitskaya, “On behavior of the solution of a generalized Cauchy problem for the wave equation at infinity”, Mathematical problems in the theory of wave propagation. Part 31, Zap. Nauchn. Sem. POMI, 285, POMI, St. Petersburg, 2002, 33–38; J. Math. Sci. (N. Y.), 122:5 (2004), 3470–3472
Linking options:
https://www.mathnet.ru/eng/znsl1550 https://www.mathnet.ru/eng/znsl/v285/p33
|
Statistics & downloads: |
Abstract page: | 173 | Full-text PDF : | 77 |
|