Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2002, Volume 285, Pages 15–32 (Mi znsl1549)  

This article is cited in 6 scientific papers (total in 6 papers)

On uniqueness of recovering the parameters of the Maxwell system via dynamical boundary data

M. I. Belisheva, V. M. Isakovb

a St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
b Department of Mathematics and Statiatics, Wichita State University
Full-text PDF (259 kB) Citations (6)
Abstract: The paper deals with the problem of determination of the parameters (functions) $\varepsilon$$\mu$ of the Maxwell dynamical system
\begin{align*} &\varepsilon E_t=\operatorname{rot}H, \quad \mu H_t=-\operatorname{rot}E \quad\text{в}\quad \Omega\times(0,T); \\ &E|_{t=0}=0, \quad H|_{t=0}=0 \quad\text{в}\quad \Omega; \\ &E_{\tan}=f \quad\text{на}\quad \partial\Omega\times[0,T] \end{align*}
(tan is the tangent component; $E=E^f(x,t)$, $H=H^f(x,t)$ is the solution) through the response operator $R^T\colon f\to\nu\times H^f|_{\partial\Omega\times[0,T]}$ ($\nu$ is normal). The parameters determine the velocity $c=(\varepsilon\mu)^{-\frac12}$, the $c$-metric $ds^2=c^{-2}|dx|^2$, and the time $T_*=\max\limits_\Omega\operatorname{dist}_c(\cdot,\partial\Omega)$. We show that, for any fixed $T>T_*$, the operator $R^{2T}$ determines $\varepsilon,\mu$ in $\Omega$ uniquely.
Received: 10.11.2001
English version:
Journal of Mathematical Sciences (New York), 2004, Volume 122, Issue 5, Pages 3459–3469
DOI: https://doi.org/10.1023/B:JOTH.0000034024.38243.02
Bibliographic databases:
UDC: 517.946
Language: Russian
Citation: M. I. Belishev, V. M. Isakov, “On uniqueness of recovering the parameters of the Maxwell system via dynamical boundary data”, Mathematical problems in the theory of wave propagation. Part 31, Zap. Nauchn. Sem. POMI, 285, POMI, St. Petersburg, 2002, 15–32; J. Math. Sci. (N. Y.), 122:5 (2004), 3459–3469
Citation in format AMSBIB
\Bibitem{BelIsa02}
\by M.~I.~Belishev, V.~M.~Isakov
\paper On uniqueness of recovering the parameters of the Maxwell system via dynamical boundary data
\inbook Mathematical problems in the theory of wave propagation. Part~31
\serial Zap. Nauchn. Sem. POMI
\yr 2002
\vol 285
\pages 15--32
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1549}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1911108}
\zmath{https://zbmath.org/?q=an:1082.35161}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2004
\vol 122
\issue 5
\pages 3459--3469
\crossref{https://doi.org/10.1023/B:JOTH.0000034024.38243.02}
Linking options:
  • https://www.mathnet.ru/eng/znsl1549
  • https://www.mathnet.ru/eng/znsl/v285/p15
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:225
    Full-text PDF :72
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024