|
Zapiski Nauchnykh Seminarov POMI, 2002, Volume 285, Pages 15–32
(Mi znsl1549)
|
|
|
|
This article is cited in 6 scientific papers (total in 6 papers)
On uniqueness of recovering the parameters of the Maxwell system via dynamical boundary data
M. I. Belisheva, V. M. Isakovb a St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
b Department of Mathematics and Statiatics, Wichita State University
Abstract:
The paper deals with the problem of determination of the parameters (functions) $\varepsilon$, $\mu$ of the Maxwell dynamical system
\begin{align*}
&\varepsilon E_t=\operatorname{rot}H, \quad \mu H_t=-\operatorname{rot}E \quad\text{в}\quad \Omega\times(0,T);
\\
&E|_{t=0}=0, \quad H|_{t=0}=0 \quad\text{в}\quad \Omega;
\\
&E_{\tan}=f \quad\text{на}\quad \partial\Omega\times[0,T]
\end{align*}
(tan is the tangent component; $E=E^f(x,t)$, $H=H^f(x,t)$ is the solution) through the response operator $R^T\colon f\to\nu\times H^f|_{\partial\Omega\times[0,T]}$ ($\nu$ is normal).
The parameters determine the velocity $c=(\varepsilon\mu)^{-\frac12}$, the $c$-metric $ds^2=c^{-2}|dx|^2$, and the time $T_*=\max\limits_\Omega\operatorname{dist}_c(\cdot,\partial\Omega)$. We show that, for any fixed $T>T_*$, the operator $R^{2T}$ determines $\varepsilon,\mu$ in $\Omega$ uniquely.
Received: 10.11.2001
Citation:
M. I. Belishev, V. M. Isakov, “On uniqueness of recovering the parameters of the Maxwell system via dynamical boundary data”, Mathematical problems in the theory of wave propagation. Part 31, Zap. Nauchn. Sem. POMI, 285, POMI, St. Petersburg, 2002, 15–32; J. Math. Sci. (N. Y.), 122:5 (2004), 3459–3469
Linking options:
https://www.mathnet.ru/eng/znsl1549 https://www.mathnet.ru/eng/znsl/v285/p15
|
Statistics & downloads: |
Abstract page: | 228 | Full-text PDF : | 72 |
|