|
Zapiski Nauchnykh Seminarov POMI, 2002, Volume 284, Pages 48–63
(Mi znsl1537)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
On Brualdi's theorem
L. Yu. Kolotilina St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
This paper studies irreducible matrices $A=(a_{ij})\in\mathbb C^{n\times n}$, $n\ge2$, satisfying Brualdi's conditions
$$
\prod_{i\in\overline\gamma}|a_{ii}|\ge\prod_{i\in\overline\gamma}R_i(A), \quad \gamma\in\mathfrak C(A),
$$
or, shortly, Brualdi matrices. Here, $R_i(A)=\sum\limits_{i\ne j}|a_{ij}|$, $i=1,\dots,n$; $\mathfrak C(A)$, is the set of circuits of length $k\ge2$ in the directed graph of $A$, and $\overline\gamma$ is the support of $\gamma$.
Among the results obtained are a characterization of Brualdi's matrices, implying, in particular, that they are generalized diagonally domiant; necessary and sufficient conditions of singularity for Brualdi matrices; explicit expressions for the absolute values of the components of right null-vectors of a singular Brualdi matrix, and conditions necessary and sufficient for a boundary point of Brualdi's inclusion region to be an eigenvalue of an irreducible matrix.
Received: 16.10.2001
Citation:
L. Yu. Kolotilina, “On Brualdi's theorem”, Computational methods and algorithms. Part XV, Zap. Nauchn. Sem. POMI, 284, POMI, St. Petersburg, 2002, 48–63; J. Math. Sci. (N. Y.), 121:4 (2004), 2465–2473
Linking options:
https://www.mathnet.ru/eng/znsl1537 https://www.mathnet.ru/eng/znsl/v284/p48
|
Statistics & downloads: |
Abstract page: | 245 | Full-text PDF : | 91 |
|