Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2002, Volume 284, Pages 48–63 (Mi znsl1537)  

This article is cited in 3 scientific papers (total in 3 papers)

On Brualdi's theorem

L. Yu. Kolotilina

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF (218 kB) Citations (3)
Abstract: This paper studies irreducible matrices $A=(a_{ij})\in\mathbb C^{n\times n}$, $n\ge2$, satisfying Brualdi's conditions
$$ \prod_{i\in\overline\gamma}|a_{ii}|\ge\prod_{i\in\overline\gamma}R_i(A), \quad \gamma\in\mathfrak C(A), $$
or, shortly, Brualdi matrices. Here, $R_i(A)=\sum\limits_{i\ne j}|a_{ij}|$, $i=1,\dots,n$; $\mathfrak C(A)$, is the set of circuits of length $k\ge2$ in the directed graph of $A$, and $\overline\gamma$ is the support of $\gamma$.
Among the results obtained are a characterization of Brualdi's matrices, implying, in particular, that they are generalized diagonally domiant; necessary and sufficient conditions of singularity for Brualdi matrices; explicit expressions for the absolute values of the components of right null-vectors of a singular Brualdi matrix, and conditions necessary and sufficient for a boundary point of Brualdi's inclusion region to be an eigenvalue of an irreducible matrix.
Received: 16.10.2001
English version:
Journal of Mathematical Sciences (New York), 2004, Volume 121, Issue 4, Pages 2465–2473
DOI: https://doi.org/10.1023/B:JOTH.0000026284.29231.b4
Bibliographic databases:
UDC: 512.643
Language: Russian
Citation: L. Yu. Kolotilina, “On Brualdi's theorem”, Computational methods and algorithms. Part XV, Zap. Nauchn. Sem. POMI, 284, POMI, St. Petersburg, 2002, 48–63; J. Math. Sci. (N. Y.), 121:4 (2004), 2465–2473
Citation in format AMSBIB
\Bibitem{Kol02}
\by L.~Yu.~Kolotilina
\paper On Brualdi's theorem
\inbook Computational methods and algorithms. Part~XV
\serial Zap. Nauchn. Sem. POMI
\yr 2002
\vol 284
\pages 48--63
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1537}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1915075}
\zmath{https://zbmath.org/?q=an:1071.15022}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2004
\vol 121
\issue 4
\pages 2465--2473
\crossref{https://doi.org/10.1023/B:JOTH.0000026284.29231.b4}
Linking options:
  • https://www.mathnet.ru/eng/znsl1537
  • https://www.mathnet.ru/eng/znsl/v284/p48
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:245
    Full-text PDF :91
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024