Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2002, Volume 284, Pages 36–47 (Mi znsl1536)  

This article is cited in 8 scientific papers (total in 8 papers)

Determinantal inequalities for accretive-dissipative matrices

Kh. D. Ikramov

M. V. Lomonosov Moscow State University
Full-text PDF (173 kB) Citations (8)
Abstract: A matrix $A\in M_n(\mathbf C)$ is said to be accretive-dissipative if in its Hermitian decomposition
$$ A=B+iC, \quad B=B^*, \quad C=C^*, $$
both matrices $B$ and $C$ are positive definite. Further, if $B=I_n$, then $A$ is called a Buckley matrix. The following extension of the classical Fischer inequality for Hermtian positive-definite matrices is proved.
Let \begin{math} A=\begin{pmatrix} A_{11}&A_{12} A_{21}&A_{22} \end{pmatrix} \end{math} be an accritive-dissipative matrix, $k$ and $l$ be the orders of $A_{11}$ and $A_{22}$, respectively, and let $m=\min\{k,l\}$. Then
$$ |{\det A}|\le3^m|{\det A_{11}}|\,|{\det A_{22}}|. $$
For Buckley matrices, the stronger bound
$$ |{\det}|\le\biggl(\frac{1+\sqrt{17}}4\biggr)^m|{\det A_{11}}|\,|{\det A_{22}}|. $$
is obtained.
Received: 14.02.2002
English version:
Journal of Mathematical Sciences (New York), 2004, Volume 121, Issue 4, Pages 2458–2464
DOI: https://doi.org/10.1023/B:JOTH.0000026283.92486.1c
Bibliographic databases:
UDC: 519.6
Language: Russian
Citation: Kh. D. Ikramov, “Determinantal inequalities for accretive-dissipative matrices”, Computational methods and algorithms. Part XV, Zap. Nauchn. Sem. POMI, 284, POMI, St. Petersburg, 2002, 36–47; J. Math. Sci. (N. Y.), 121:4 (2004), 2458–2464
Citation in format AMSBIB
\Bibitem{Ikr02}
\by Kh.~D.~Ikramov
\paper Determinantal inequalities for accretive-dissipative matrices
\inbook Computational methods and algorithms. Part~XV
\serial Zap. Nauchn. Sem. POMI
\yr 2002
\vol 284
\pages 36--47
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1536}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1915074}
\zmath{https://zbmath.org/?q=an:1071.15021}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2004
\vol 121
\issue 4
\pages 2458--2464
\crossref{https://doi.org/10.1023/B:JOTH.0000026283.92486.1c}
Linking options:
  • https://www.mathnet.ru/eng/znsl1536
  • https://www.mathnet.ru/eng/znsl/v284/p36
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:269
    Full-text PDF :91
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024