Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2002, Volume 284, Pages 5–17 (Mi znsl1534)  

This article is cited in 3 scientific papers (total in 3 papers)

Powers of sign portraits of real matrices

Yu. A. Alpin, S. N. Il'in

Kazan State University
Full-text PDF (193 kB) Citations (3)
Abstract: The sign portrait $S$ of a real $n\times n$ matrix is a matrix over the semiring with elements $0,1,-1$ and $\theta$, where $\theta$ symbolizes indeterminateness. It is proved that if $k$ is the least positive integer such that all the entries of $S^k$ are equal to $\theta$ then $k\le2n^2-3n+2$, and this bound is sharp.
Received: 04.02.2002
English version:
Journal of Mathematical Sciences (New York), 2004, Volume 121, Issue 4, Pages 2441–2447
DOI: https://doi.org/10.1023/B:JOTH.0000026281.22266.53
Bibliographic databases:
UDC: 512.643
Language: Russian
Citation: Yu. A. Alpin, S. N. Il'in, “Powers of sign portraits of real matrices”, Computational methods and algorithms. Part XV, Zap. Nauchn. Sem. POMI, 284, POMI, St. Petersburg, 2002, 5–17; J. Math. Sci. (N. Y.), 121:4 (2004), 2441–2447
Citation in format AMSBIB
\Bibitem{AlpIli02}
\by Yu.~A.~Alpin, S.~N.~Il'in
\paper Powers of sign portraits of real matrices
\inbook Computational methods and algorithms. Part~XV
\serial Zap. Nauchn. Sem. POMI
\yr 2002
\vol 284
\pages 5--17
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1534}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1915072}
\zmath{https://zbmath.org/?q=an:1071.15024}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2004
\vol 121
\issue 4
\pages 2441--2447
\crossref{https://doi.org/10.1023/B:JOTH.0000026281.22266.53}
Linking options:
  • https://www.mathnet.ru/eng/znsl1534
  • https://www.mathnet.ru/eng/znsl/v284/p5
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:205
    Full-text PDF :93
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024