|
Zapiski Nauchnykh Seminarov POMI, 2002, Volume 284, Pages 5–17
(Mi znsl1534)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
Powers of sign portraits of real matrices
Yu. A. Alpin, S. N. Il'in Kazan State University
Abstract:
The sign portrait $S$ of a real $n\times n$ matrix is a matrix over the semiring with elements $0,1,-1$ and $\theta$, where $\theta$ symbolizes indeterminateness. It is proved that if $k$ is the least positive integer such that all the entries of $S^k$ are equal to $\theta$ then $k\le2n^2-3n+2$, and this bound is sharp.
Received: 04.02.2002
Citation:
Yu. A. Alpin, S. N. Il'in, “Powers of sign portraits of real matrices”, Computational methods and algorithms. Part XV, Zap. Nauchn. Sem. POMI, 284, POMI, St. Petersburg, 2002, 5–17; J. Math. Sci. (N. Y.), 121:4 (2004), 2441–2447
Linking options:
https://www.mathnet.ru/eng/znsl1534 https://www.mathnet.ru/eng/znsl/v284/p5
|
Statistics & downloads: |
Abstract page: | 205 | Full-text PDF : | 93 |
|