Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2001, Volume 283, Pages 73–97 (Mi znsl1524)  

This article is cited in 5 scientific papers (total in 5 papers)

Gaussuan limit for projective characters of large symmetric groups

V. N. Ivanov

M. V. Lomonosov Moscow State University
Full-text PDF (301 kB) Citations (5)
Abstract: In the 1993 S. Kerov obtained a central limit theorem for the Plansherel measure on Young diagrams. The Plansherel measure is a natural probability measure on the set of irredcible characters of the symmetric group $S_n$. Kerov's theorem states that, as $n\to\infty$, the values of irreducible characters on the simple cycles, appropriately normalized and considered as random variables, are asymptotically independent and converge to Gaussian random variables. In this work we obtain an analogue of this theorem for projective representations of the symmetric group.
Received: 30.10.2001
English version:
Journal of Mathematical Sciences (New York), 2004, Volume 121, Issue 3, Pages 2330–2344
DOI: https://doi.org/10.1023/B:JOTH.0000024615.07311.fe
Bibliographic databases:
UDC: 512.5
Language: Russian
Citation: V. N. Ivanov, “Gaussuan limit for projective characters of large symmetric groups”, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part VI, Zap. Nauchn. Sem. POMI, 283, POMI, St. Petersburg, 2001, 73–97; J. Math. Sci. (N. Y.), 121:3 (2004), 2330–2344
Citation in format AMSBIB
\Bibitem{Iva01}
\by V.~N.~Ivanov
\paper Gaussuan limit for projective characters of large symmetric groups
\inbook Representation theory, dynamical systems, combinatorial and algoritmic methods. Part~VI
\serial Zap. Nauchn. Sem. POMI
\yr 2001
\vol 283
\pages 73--97
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1524}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1879064}
\zmath{https://zbmath.org/?q=an:1069.60025}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2004
\vol 121
\issue 3
\pages 2330--2344
\crossref{https://doi.org/10.1023/B:JOTH.0000024615.07311.fe}
Linking options:
  • https://www.mathnet.ru/eng/znsl1524
  • https://www.mathnet.ru/eng/znsl/v283/p73
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:206
    Full-text PDF :62
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024