Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2001, Volume 283, Pages 63–72 (Mi znsl1523)  

The equivariant embeddings of $n$-dimensional space into the Hilbert space

M. Gorbulsky

Saint-Petersburg State University
Abstract: The present paper is devoted to the study of equivariant embeddings of $n$-dimensional space into the Hilbert space. We consider a representation of a group of similarities. The existence of a cocycle of this representation implies the existence of an isometric embedding of a metric group into the Hilbert space. Then we describe all cocycles of a representation of additive group of real numbers and construct an embedding of $n$-dimensional space supplied with a metric $d(x,y)=|x-y|^\alpha$ into the Hilbert space.
Received: 23.10.2001
English version:
Journal of Mathematical Sciences (New York), 2004, Volume 121, Issue 3, Pages 2326–2329
DOI: https://doi.org/10.1023/B:JOTH.0000024614.98313.86
Bibliographic databases:
UDC: 517.98
Language: Russian
Citation: M. Gorbulsky, “The equivariant embeddings of $n$-dimensional space into the Hilbert space”, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part VI, Zap. Nauchn. Sem. POMI, 283, POMI, St. Petersburg, 2001, 63–72; J. Math. Sci. (N. Y.), 121:3 (2004), 2326–2329
Citation in format AMSBIB
\Bibitem{Gor01}
\by M.~Gorbulsky
\paper The equivariant embeddings of $n$-dimensional space into the Hilbert space
\inbook Representation theory, dynamical systems, combinatorial and algoritmic methods. Part~VI
\serial Zap. Nauchn. Sem. POMI
\yr 2001
\vol 283
\pages 63--72
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1523}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1879063}
\zmath{https://zbmath.org/?q=an:1091.46013}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2004
\vol 121
\issue 3
\pages 2326--2329
\crossref{https://doi.org/10.1023/B:JOTH.0000024614.98313.86}
Linking options:
  • https://www.mathnet.ru/eng/znsl1523
  • https://www.mathnet.ru/eng/znsl/v283/p63
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:145
    Full-text PDF :57
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024