|
Zapiski Nauchnykh Seminarov POMI, 2001, Volume 283, Pages 21–36
(Mi znsl1520)
|
|
|
|
This article is cited in 16 scientific papers (total in 18 papers)
Remarks on the Markov–Krein identity and quasi-invariance of the gamma process
A. M. Vershika, M. Yorb, N. V. Tsilevicha a St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
b Université Pierre & Marie Curie, Paris VI
Abstract:
We present a simple proof of the Markov–Krein identity for distributions of means of linear functionals of the Dirichlet process and its various generalizations. The key idea is to use the representation of the Dirichlet process as the normalized gamma process and fundamental properties of gamma processes.
Received: 15.11.2001
Citation:
A. M. Vershik, M. Yor, N. V. Tsilevich, “Remarks on the Markov–Krein identity and quasi-invariance of the gamma process”, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part VI, Zap. Nauchn. Sem. POMI, 283, POMI, St. Petersburg, 2001, 21–36; J. Math. Sci. (N. Y.), 121:3 (2004), 2303–2310
Linking options:
https://www.mathnet.ru/eng/znsl1520 https://www.mathnet.ru/eng/znsl/v283/p21
|
Statistics & downloads: |
Abstract page: | 428 | Full-text PDF : | 137 |
|