Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2001, Volume 282, Pages 118–138 (Mi znsl1511)  

Additional smoothness phenomena for analytic functions

A. M. Kotochigov

Saint-Petersburg State Electrotechnical University
Abstract: The influence is studied of the geometric properties of a domian on the smoothness of Hölder class analytic functions defined on it. The case of the disc is covered by classical results of Hurdy and Littlewood. We consider a domian $G$ with an inward cusp boundary point $\xi$ (this means that, $\operatorname{meas}U_{\xi}\cap(\mathbb C\setminus G)/\operatorname{meas}U_{\xi}\to0$ as $\operatorname{meas}U_{\xi}\to0$, where the $U_{\xi}$ stands for a neighborhood of $\xi$). Three zones are distinguished near such a point: the outer zone, where high smoothness occur; the boundary zone, where the smoothness is “standard”, and the intermediate zone, where the smoothness decays steadily from high to standard. A sharp geometric description of these zones is given.
Received: 13.06.2001
English version:
Journal of Mathematical Sciences (New York), 2004, Volume 120, Issue 5, Pages 1711–1722
DOI: https://doi.org/10.1023/B:JOTH.0000018870.20021.96
Bibliographic databases:
UDC: 517.9
Language: Russian
Citation: A. M. Kotochigov, “Additional smoothness phenomena for analytic functions”, Investigations on linear operators and function theory. Part 29, Zap. Nauchn. Sem. POMI, 282, POMI, St. Petersburg, 2001, 118–138; J. Math. Sci. (N. Y.), 120:5 (2004), 1711–1722
Citation in format AMSBIB
\Bibitem{Kot01}
\by A.~M.~Kotochigov
\paper Additional smoothness phenomena for analytic functions
\inbook Investigations on linear operators and function theory. Part~29
\serial Zap. Nauchn. Sem. POMI
\yr 2001
\vol 282
\pages 118--138
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1511}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1874886}
\zmath{https://zbmath.org/?q=an:1108.31003}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2004
\vol 120
\issue 5
\pages 1711--1722
\crossref{https://doi.org/10.1023/B:JOTH.0000018870.20021.96}
Linking options:
  • https://www.mathnet.ru/eng/znsl1511
  • https://www.mathnet.ru/eng/znsl/v282/p118
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:154
    Full-text PDF :66
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024