Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2006, Volume 340, Pages 76–86 (Mi znsl151)  

Cliques in $k$-connected graphs

S. A. Obraztsova

Saint-Petersburg State Electrotechnical University
References:
Abstract: The existance of $n+1$-cliques in $k$-connected graphs is studied. It is proved that in a $k$-connected graph $G$ such a clique exists provided $G$ satisfies the following conditions: (1) the vertices of any $n$-clique of $G$ lie in a $k$-separating set; (2) after removing certain pairs, each consisting of a vertex and an edge, the connectivity of the graph $G$ decreases by 2.
Received: 20.09.2006
English version:
Journal of Mathematical Sciences (New York), 2007, Volume 145, Issue 3, Pages 4975–4980
DOI: https://doi.org/10.1007/s10958-007-0332-x
Bibliographic databases:
UDC: 519.171.1
Language: Russian
Citation: S. A. Obraztsova, “Cliques in $k$-connected graphs”, Combinatorics and graph theory. Part I, Zap. Nauchn. Sem. POMI, 340, POMI, St. Petersburg, 2006, 76–86; J. Math. Sci. (N. Y.), 145:3 (2007), 4975–4980
Citation in format AMSBIB
\Bibitem{Obr06}
\by S.~A.~Obraztsova
\paper Cliques in $k$-connected graphs
\inbook Combinatorics and graph theory. Part~I
\serial Zap. Nauchn. Sem. POMI
\yr 2006
\vol 340
\pages 76--86
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl151}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2355486}
\zmath{https://zbmath.org/?q=an:1117.05083}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2007
\vol 145
\issue 3
\pages 4975--4980
\crossref{https://doi.org/10.1007/s10958-007-0332-x}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34547663096}
Linking options:
  • https://www.mathnet.ru/eng/znsl151
  • https://www.mathnet.ru/eng/znsl/v340/p76
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:212
    Full-text PDF :104
    References:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024