Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2001, Volume 282, Pages 51–65 (Mi znsl1506)  

This article is cited in 1 scientific paper (total in 1 paper)

Quasisimilar weak contractions have isomorphic lattices of invariant subspaces

M. F. Gamal'

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF (228 kB) Citations (1)
Abstract: A contruction $T$ acting on a Hilbert space $H$ is called a weak contraction if the spectrum of $T$ does not cover the unit disk $\mathbb D$ and the operator $I-T^*T$ is of trace class. The operators $T_1\colon H_1\to H_1$ and $T_2\colon H_2\to H_2$ are called quasisimilar if there exist operators $X\colon H_1\to H_2$ and $Y\colon H_2\to H_1$ such that $T_2X=XT_1$, $YT_2=T_1Y$, and $X$ and $Y$ have zero kernels and dense ranges. It is proved that if two weak contructions $T_1$ and $T_2$ acting on separable spaces $H_1$ and $H_2$ are quasisimilar, then there exists an operator $X\colon H_1\to H_2$ such that $XT_1=T_2$ and the mapping $\mathscr I_X\colon\operatorname{Lat}T_1\to\operatorname{Lat}T_2$, $\mathscr I_XE=\operatorname{clos}XE$, $E\in\operatorname{Lat}T_1$, is a lattice isomorphism. An example is given of two quasisimilar weak contractions such that for any isomorphism $\mathscr I_X$ its inverse is not equal to $\mathscr I_Y$ for an arbitrary (bounded) operator $Y$.
Received: 25.06.2001
English version:
Journal of Mathematical Sciences (New York), 2004, Volume 120, Issue 5, Pages 1672–1679
DOI: https://doi.org/10.1023/B:JOTH.0000018865.33964.b5
Bibliographic databases:
UDC: 517.98
Language: Russian
Citation: M. F. Gamal', “Quasisimilar weak contractions have isomorphic lattices of invariant subspaces”, Investigations on linear operators and function theory. Part 29, Zap. Nauchn. Sem. POMI, 282, POMI, St. Petersburg, 2001, 51–65; J. Math. Sci. (N. Y.), 120:5 (2004), 1672–1679
Citation in format AMSBIB
\Bibitem{Gam01}
\by M.~F.~Gamal'
\paper Quasisimilar weak contractions have isomorphic lattices of invariant subspaces
\inbook Investigations on linear operators and function theory. Part~29
\serial Zap. Nauchn. Sem. POMI
\yr 2001
\vol 282
\pages 51--65
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1506}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1874881}
\zmath{https://zbmath.org/?q=an:1064.47008}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2004
\vol 120
\issue 5
\pages 1672--1679
\crossref{https://doi.org/10.1023/B:JOTH.0000018865.33964.b5}
Linking options:
  • https://www.mathnet.ru/eng/znsl1506
  • https://www.mathnet.ru/eng/znsl/v282/p51
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:177
    Full-text PDF :61
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024