Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2001, Volume 282, Pages 34–50 (Mi znsl1505)  

This article is cited in 1 scientific paper (total in 1 paper)

On the upper bounds of Lebesgue constants for Forier–Jacobi series summation methods

O. L. Vinogradov

St. Petersburg State University, Department of Mathematics and Mechanics
Full-text PDF (220 kB) Citations (1)
Abstract: In what follows. the $P^{(\alpha,\beta)}_k$ are Jacobi polinomians, $C[a,b]$ is the space of continuous functions on $[a,b]$ with uniform norm, $\mathscr U^{\Lambda}_n\colon C[-1,1]\to C[-1,1]$ is a sequence of operators determined by a matrixof multipliers $\Lambda=\{\lambda^{(n)}_k\}$:
\begin{gather*} f\sim\sum^{\infty}_{k=0}a_kP^{(\alpha,\beta)}_k, \qquad \mathscr U^{\Lambda}_nf\sim\sum^{\infty}_{k=0}\lambda^{(n)}_ka_kP^{(\alpha,\beta)}, \\ \mathfrak L^{(\alpha,\beta)}_n(\Lambda)=\sup_{y\in[-1,1]}\sup_{\|f\|\le1}\left|\mathscr U^{\Lambda}_nf(y)\right|. \end{gather*}
The values of $\sup\limits\mathfrak L^{(\alpha,\beta)}_n(\Lambda)$ and $\lim\limits_{n\to\infty}\mathfrak L^{(\alpha,\beta)}_n(\Lambda)$ are studied. It is proved that in the cases of
\begin{gather*} 1)\alpha=\beta=-1/2, \quad \lambda^{(n)}_k=\varphi(k/n); \\ 2)\alpha=\beta=1/2, \quad \lambda^{(n)}_k=\varphi((k+1)/n); \\ 3)\alpha=\beta=\pm1/2, \quad \lambda^{(n)}_k=\varphi((k+1/2)/n) \end{gather*}
these values are equal to
$$ 1) \quad \frac2\pi\int\limits^{\infty}_0\left|\int\limits^{\infty}_0\varphi(t)\cos zt\,dt\right|dz; \qquad 2,\ 3)\quad \frac2\pi\int\limits^{\infty}_0z\left|\int\limits^{\infty}_0t\varphi(t)\sin zt\,dt\right|dz. $$
under some conditions on $\varphi$.
Then it is shown that for the Legendre polynomials $(\alpha=\beta=0)$ and $\lambda^{(n)}_k=\varphi(k/n)$ the limit and the supremum of the Lebesgue constants may fail to be equal.
Received: 14.06.2001
English version:
Journal of Mathematical Sciences (New York), 2004, Volume 120, Issue 5, Pages 1662–1671
DOI: https://doi.org/10.1023/B:JOTH.0000018864.10681.18
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: O. L. Vinogradov, “On the upper bounds of Lebesgue constants for Forier–Jacobi series summation methods”, Investigations on linear operators and function theory. Part 29, Zap. Nauchn. Sem. POMI, 282, POMI, St. Petersburg, 2001, 34–50; J. Math. Sci. (N. Y.), 120:5 (2004), 1662–1671
Citation in format AMSBIB
\Bibitem{Vin01}
\by O.~L.~Vinogradov
\paper On the upper bounds of Lebesgue constants for Forier--Jacobi series summation methods
\inbook Investigations on linear operators and function theory. Part~29
\serial Zap. Nauchn. Sem. POMI
\yr 2001
\vol 282
\pages 34--50
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1505}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1874880}
\zmath{https://zbmath.org/?q=an:1092.42018}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2004
\vol 120
\issue 5
\pages 1662--1671
\crossref{https://doi.org/10.1023/B:JOTH.0000018864.10681.18}
Linking options:
  • https://www.mathnet.ru/eng/znsl1505
  • https://www.mathnet.ru/eng/znsl/v282/p34
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:182
    Full-text PDF :69
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024