Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2001, Volume 282, Pages 26–33 (Mi znsl1504)  

This article is cited in 1 scientific paper (total in 1 paper)

On the zeros of the derivative of a rational function and coinvariant subspaces for the shift operator on the Bergman space

I. V. Videnskii

Saint-Petersburg State Electrotechnical University
Full-text PDF (174 kB) Citations (1)
Abstract: If all $n$ $(n>1)$ zeros of a rational function $r$ with simple poles are in a half-plane, then the derivative of $r$ has at least one zero in the same half-plane. This result is used to prove that the number of zeros of a linear combination of $n$ Bergman kernels in the unit disc may range from 0 to $2n-3$.
Received: 22.10.2001
English version:
Journal of Mathematical Sciences (New York), 2004, Volume 120, Issue 5, Pages 1657–1661
DOI: https://doi.org/10.1023/B:JOTH.0000018863.25585.fc
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: I. V. Videnskii, “On the zeros of the derivative of a rational function and coinvariant subspaces for the shift operator on the Bergman space”, Investigations on linear operators and function theory. Part 29, Zap. Nauchn. Sem. POMI, 282, POMI, St. Petersburg, 2001, 26–33; J. Math. Sci. (N. Y.), 120:5 (2004), 1657–1661
Citation in format AMSBIB
\Bibitem{Vid01}
\by I.~V.~Videnskii
\paper On the zeros of the derivative of a~rational function and coinvariant subspaces for the shift operator on the Bergman space
\inbook Investigations on linear operators and function theory. Part~29
\serial Zap. Nauchn. Sem. POMI
\yr 2001
\vol 282
\pages 26--33
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1504}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1874879}
\zmath{https://zbmath.org/?q=an:1069.30008}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2004
\vol 120
\issue 5
\pages 1657--1661
\crossref{https://doi.org/10.1023/B:JOTH.0000018863.25585.fc}
Linking options:
  • https://www.mathnet.ru/eng/znsl1504
  • https://www.mathnet.ru/eng/znsl/v282/p26
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:193
    Full-text PDF :166
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024