|
Zapiski Nauchnykh Seminarov POMI, 2001, Volume 282, Pages 5–19
(Mi znsl1502)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Toeplitz–Schur multipliers of $S_p(L^2(G))$ for $p<1$
A. B. Aleksandrov St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
We study Toeplitz–Schur multipliers of Schatten–von Neumann class $S_p$ for $0<p<1$. We describe all functions $F$ on an arbitrary commutative locally compact group $G$ satisfying the following condition: for any integral operator in $S_p$ with kernel function $k(x,y)$, the kernel function $F(x-y)k(x)k(y)$ determines also an integral operator in $S_p$.
Received: 25.06.2001
Citation:
A. B. Aleksandrov, “Toeplitz–Schur multipliers of $S_p(L^2(G))$ for $p<1$”, Investigations on linear operators and function theory. Part 29, Zap. Nauchn. Sem. POMI, 282, POMI, St. Petersburg, 2001, 5–19; J. Math. Sci. (N. Y.), 120:5 (2004), 1645–1652
Linking options:
https://www.mathnet.ru/eng/znsl1502 https://www.mathnet.ru/eng/znsl/v282/p5
|
Statistics & downloads: |
Abstract page: | 249 | Full-text PDF : | 72 |
|