|
Zapiski Nauchnykh Seminarov POMI, 2001, Volume 281, Pages 133–153
(Mi znsl1492)
|
|
|
|
$QF$-proper classes and relative stable categories
A. I. Generalov St. Petersburg State University, Department of Mathematics and Mechanics
Abstract:
A relative version of Rickard's theorem is proved, namely, if $\omega$ is a quasi-Frobenius proper class of short sequences in an Abelian category $\mathscr A$, then $\omega$-stable category of the category $\mathscr A$, is a quotient category of the relative bounded derived category $D^b_{\omega}(\mathscr A)$.
Received: 10.09.2001
Citation:
A. I. Generalov, “$QF$-proper classes and relative stable categories”, Problems in the theory of representations of algebras and groups. Part 8, Zap. Nauchn. Sem. POMI, 281, POMI, St. Petersburg, 2001, 133–153; J. Math. Sci. (N. Y.), 120:4 (2004), 1563–1574
Linking options:
https://www.mathnet.ru/eng/znsl1492 https://www.mathnet.ru/eng/znsl/v281/p133
|
Statistics & downloads: |
Abstract page: | 176 | Full-text PDF : | 68 |
|