Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2001, Volume 281, Pages 35–59 (Mi znsl1488)  

This article is cited in 11 scientific papers (total in 11 papers)

Subgroups of split orthogonal groups over a commutative ring

N. A. Vavilov

Saint-Petersburg State University
Abstract: We describe subgroups of the split orthogonal group $\Gamma=\mathrm{GO}(n,R)$ of degree $n$ over a commutative ring $R$ such that $2\in R^*$, which contain the elementary subgroup of a regularly embedded semi-simple group $F$. We show that if the ranks of all irreducible components of $F$ are at least 4, then the description of its overgroups is standard in the sense that for any intermediate subgroup $H$ there exists a unique orthogonal net of ideals such that $H$ lies between the corresponding net subgroup and its normalaser in $\Gamma$. A similar result for subgroups of the general linear group $\mathrm{GL}(n,R)$ with irreducible components of ranks at least 2 was obtained by Z. I. Borevich and the present author. We construct examples which show that if $F$ has irreducible components of ranks 2 or 3, then the standard description does not hold. The paper is based on the previous publications by the author, where similar results were obtained in some special cases, but the proof is based on a new computational trick.
Received: 21.05.2001
English version:
Journal of Mathematical Sciences (New York), 2004, Volume 120, Issue 4, Pages 1501–1512
DOI: https://doi.org/10.1023/B:JOTH.0000017881.22871.49
Bibliographic databases:
UDC: 513.6
Language: Russian
Citation: N. A. Vavilov, “Subgroups of split orthogonal groups over a commutative ring”, Problems in the theory of representations of algebras and groups. Part 8, Zap. Nauchn. Sem. POMI, 281, POMI, St. Petersburg, 2001, 35–59; J. Math. Sci. (N. Y.), 120:4 (2004), 1501–1512
Citation in format AMSBIB
\Bibitem{Vav01}
\by N.~A.~Vavilov
\paper Subgroups of split orthogonal groups over a~commutative ring
\inbook Problems in the theory of representations of algebras and groups. Part~8
\serial Zap. Nauchn. Sem. POMI
\yr 2001
\vol 281
\pages 35--59
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1488}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1875717}
\zmath{https://zbmath.org/?q=an:1080.20046}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2004
\vol 120
\issue 4
\pages 1501--1512
\crossref{https://doi.org/10.1023/B:JOTH.0000017881.22871.49}
Linking options:
  • https://www.mathnet.ru/eng/znsl1488
  • https://www.mathnet.ru/eng/znsl/v281/p35
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:345
    Full-text PDF :169
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024