Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2001, Volume 280, Pages 239–250 (Mi znsl1483)  

On the topology of cycles in pseudolinear programs

N. E. Mnev

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract: By demand coming from the quasicrystal community, we present here a construction realizing an arbitrary oriented link in $\mathbb R^3$ by the graph of a 3d pseudolinear (or matroid) program. This gives a hint about possible “topological complexity” of rank 4 oriented matroids $\approx3d$ pseudoplane arrangements $\approx3d$ quasicrystal tilings.
Received: 20.12.2000
English version:
Journal of Mathematical Sciences (New York), 2004, Volume 119, Issue 2, Pages 260–267
DOI: https://doi.org/10.1023/B:JOTH.0000008768.06895.ba
Bibliographic databases:
UDC: 515.162.8
Language: English
Citation: N. E. Mnev, “On the topology of cycles in pseudolinear programs”, Geometry and topology. Part 7, Zap. Nauchn. Sem. POMI, 280, POMI, St. Petersburg, 2001, 239–250; J. Math. Sci. (N. Y.), 119:2 (2004), 260–267
Citation in format AMSBIB
\Bibitem{Mne01}
\by N.~E.~Mnev
\paper On the topology of cycles in pseudolinear programs
\inbook Geometry and topology. Part~7
\serial Zap. Nauchn. Sem. POMI
\yr 2001
\vol 280
\pages 239--250
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1483}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1879270}
\zmath{https://zbmath.org/?q=an:1077.52522}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2004
\vol 119
\issue 2
\pages 260--267
\crossref{https://doi.org/10.1023/B:JOTH.0000008768.06895.ba}
Linking options:
  • https://www.mathnet.ru/eng/znsl1483
  • https://www.mathnet.ru/eng/znsl/v280/p239
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:129
    Full-text PDF :50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024