|
Zapiski Nauchnykh Seminarov POMI, 2001, Volume 279, Pages 229–240
(Mi znsl1464)
|
|
|
|
This article is cited in 39 scientific papers (total in 39 papers)
The Reidemeister number of any automorphism of a Gromov hyperbolic group is infinite
A. L. Fel'shtyn Ernst Moritz Arndt University of Greifswald
Abstract:
It is shown that the number of twisted conjugancy classes is infinite for any automorphism of a nonelementary, Gromov hyperbolic group. An analog of the Selberg theory for twisted conjugacy classes is suggested.
Received: 15.12.2000
Citation:
A. L. Fel'shtyn, “The Reidemeister number of any automorphism of a Gromov hyperbolic group is infinite”, Geometry and topology. Part 6, Zap. Nauchn. Sem. POMI, 279, POMI, St. Petersburg, 2001, 229–240; J. Math. Sci. (N. Y.), 119:1 (2004), 117–123
Linking options:
https://www.mathnet.ru/eng/znsl1464 https://www.mathnet.ru/eng/znsl/v279/p229
|
Statistics & downloads: |
Abstract page: | 366 | Full-text PDF : | 94 |
|