Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2001, Volume 279, Pages 229–240 (Mi znsl1464)  

This article is cited in 39 scientific papers (total in 39 papers)

The Reidemeister number of any automorphism of a Gromov hyperbolic group is infinite

A. L. Fel'shtyn

Ernst Moritz Arndt University of Greifswald
Abstract: It is shown that the number of twisted conjugancy classes is infinite for any automorphism of a nonelementary, Gromov hyperbolic group. An analog of the Selberg theory for twisted conjugacy classes is suggested.
Received: 15.12.2000
English version:
Journal of Mathematical Sciences (New York), 2004, Volume 119, Issue 1, Pages 117–123
DOI: https://doi.org/10.1023/B:JOTH.0000008749.42806.e3
Bibliographic databases:
UDC: 512.54+515.126.4
Language: Russian
Citation: A. L. Fel'shtyn, “The Reidemeister number of any automorphism of a Gromov hyperbolic group is infinite”, Geometry and topology. Part 6, Zap. Nauchn. Sem. POMI, 279, POMI, St. Petersburg, 2001, 229–240; J. Math. Sci. (N. Y.), 119:1 (2004), 117–123
Citation in format AMSBIB
\Bibitem{Fel01}
\by A.~L.~Fel'shtyn
\paper The Reidemeister number of any automorphism of a Gromov hyperbolic group is infinite
\inbook Geometry and topology. Part~6
\serial Zap. Nauchn. Sem. POMI
\yr 2001
\vol 279
\pages 229--240
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl1464}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1846083}
\zmath{https://zbmath.org/?q=an:1070.20050}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2004
\vol 119
\issue 1
\pages 117--123
\crossref{https://doi.org/10.1023/B:JOTH.0000008749.42806.e3}
Linking options:
  • https://www.mathnet.ru/eng/znsl1464
  • https://www.mathnet.ru/eng/znsl/v279/p229
  • This publication is cited in the following 39 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:366
    Full-text PDF :94
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024